|
Homeyer, C. R., J. B. Smith, K. M. Bedka, K. P. Bowman, D. M. Wilmouth, R. Ueyama, J. Dean-Day, J. M. St. Clair, R. Hannun, J. Hare, A. Pandey, D. S. Sayres, T. F. Hanisco, A. E. Gordon, and E. N. Tinney, 2023. Extreme Altitudes of Stratospheric Hydration by Midlatitude Convection Observed During the DCOTSS Field Campaign, Geophys. Res. Lett., 50, doi: 10.1029/2023GL104914.
|
|
Fischer, J., M. D. Flournoy, and A. W. Lyza, 2023. Comments on "A Climatology of Cell Mergers with Supercells and Their Association with Mesocyclone Evolution" and "The Influence of Cell Mergers on Supercell Characteristics and Tornado Evolution on 27-28 April 2011", Mon. Wea. Rev., 151, 2541–2545, doi: 10.1175/MWR-D-23-0120.1.
|
|
Auth, R. M., and C. R. Homeyer, 2023. Targeted Balloon Observations of Stratosphere-To-Troposphere Transport From a Mesoscale Convective System, J. Geophys. Res. Atmos., 128, doi: 10.1029/2023JD039139.
|
|
Murphy, A. M., and C. R. Homeyer, 2023. Comparison of Radar-Observed Tornadic and Nontornadic MCS Cells Using Probability-Matched Means, J. Appl. Meteorol. Climatol., 62, 1371–1388, doi: 10.1175/JAMC-D-23-0070.1.
|
|
Homeyer, C. R., E. M. Murillo, and M. R. Kumjian, 2023. Relationships between 10 Years of Radar-Observed Supercell Characteristics and Hail Potential, Mon. Wea. Rev., 151, 2609–2632, doi: 10.1175/MWR-D-23-0019.1.
|
|
Murphy, A. M., C. R. Homeyer, and K. Q. Allen, 2023. Development and Investigation of GridRad-Severe, a Multiyear Severe Event Radar Dataset, Mon. Wea. Rev., 151, 2257–2277, doi: 10.1175/MWR-D-23-0017.1.
|
|
Jellis, D., K. P. Bowman, and A. D. Rapp, 2023. Lifetimes of Overshooting Convective Events Using High-Frequency Gridded Radar Composites, Mon. Wea. Rev., 151, 1979–1992, doi: 10.1175/MWR-D-23-0032.1.
|
|
Cuchiara, G. C., A. Fried, M. C. Barth, M. M. Bela, C. R. Homeyer, J. Walega, P. Weibring, D. Richter, S. Woods, A. Beyersdorf, T. V. Bui, and J. Dean-Day, 2023. Effect of Marine and Land Convection on Wet Scavenging of Ozone Precursors Observed During a SEAC4RS Case Study, J. Geophys. Res. Atmos., 128, e2022JD037107, doi: 10.1029/2022JD037107.
|
|
Chang, K., K. Chang, K. P. Bowman, and A. D. Rapp, 2023. Transport and Confinement of Plumes From Tropopause-Overshooting Convection Over the Contiguous United States During the Warm Season, J. Geophys. Res. Atmos., 128, e2022JD037020, doi: 10.1029/2022JD037020.
|
|
Dougherty, E. M., A. F. Prein, E. D. Gutmann, and A. J. Newman, 2023. Future Simulated Changes in Central U.S. Mesoscale Convective System Rainfall Caused by Changes in Convective and Stratiform Structure, J. Geophys. Res. Atmos., 128, e2022JD037537, doi: 10.1029/2022JD037537.
|
|
Liu, W., P. A. Ullrich, J. Li, C. Zarzycki, P. M. Caldwell, L. R. Leung, and Y. Qian, 2023. The June 2012 North American Derecho: A Testbed for Evaluating Regional and Global Climate Modeling Systems at Cloud-Resolving Scales, J. Adv. Model. Earth Syst., 15, doi: 10.1029/2022MS003358.
|
|
Manser, R. P., and B. C. Ancell, 2023. Initial Condition Convection-Allowing Ensembles with Large Membership for Probabilistic Prediction of Convective Hazards, Mon. Wea. Rev., 151, 689–715, doi: 10.1175/mwr-d-21-0269.1.
|
|
Qin, H., S. A. Klein, H. Ma, K. Van Weverberg, Z. Feng, X. Chen, M. Best, H. Hu, L. R. Leung, C. J. Morcrette, H. Rumbold, and S. Webster, 2023. Summertime Near-Surface Temperature Biases Over the Central United States in Convection-Permitting Simulations, J. Geophys. Res. Atmos., 128, e2023JD038624, doi: 10.1029/2023JD038624.
|
|
Scarino, B., K. Itterly, K. Bedka, C. R. Homeyer, J. Allen, S. Bang, and D. Cecil, 2023. Deriving Severe Hail Likelihood from Satellite Observations and Model Reanalysis Parameters Using a Deep Neural Network, Artif. Intell. Earth Syst., 2, doi: 10.1175/aies-d-22-0042.1.
|
|
Zhang, Y., J. Fan, M. Shrivastava, C. R. Homeyer, Y. Wang, and J. Seinfeld, 2022. Notable Impacts of Wildfires in the Western US on Weather Hazards in the Central US, Proc. Nat. Acad. Sci., 119, doi: 10.1073/pnas.2207329119.
|
|
Hu, J., and A. Ryzhkov, 2022. Climatology of the Vertical Profiles of Polarimetric Radar Variables and Retrieved Microphysical Parameters in Continental/Tropical MCSs and Landfalling Hurricanes, J. Geophys. Res. Atmos., 127, e2021JD035498, doi: 10.1029/2021JD035498.
|
|
Fan, J., Zhang, Y., Wang, J., Jeong, J.-H., Chen, X., Zhang, S., et al., 2022. Contrasting responses of hailstorms to anthropogenic climate change in different synoptic weather systems. Earth's Future, 10, e2022EF002768, doi: 10.1029/2022EF002768.
|
|
Murillo, E. M., and C. R. Homeyer, 2022. What Determines Above-Anvil Cirrus Plume Infrared Temperature? J. Atmos. Sci., 79, 3181–3194, doi: 10.1175/JAS-D-22-0080.1.
|
|
Brunner, M. I., and E. M. Dougherty, 2022. Varying Importance of Storm Types and Antecedent Conditions for Local and Regional Floods. Water Resources Research, 58, doi: 10.1029/2022wr033249.
|
|
Hu, H., Z. Feng, and L. R. Leung, 2022. Quantifying Flood Frequency Associated with Clustered Mesoscale Convective Systems in the United States. J. Hydrometeorol., 23, 1685-1703, doi: 10.1175/jhm-d-22-0038.1.
|
|
Prein, A. F., M. Ge, A. R. Valle, D. Wang, and S. E. Giangrande, 2022. Towards a Unified Setup to Simulate Mid-Latitude and Tropical Mesoscale Convective Systems at Kilometer-Scales. Earth and Space Science, 9, doi: 10.1029/2022ea002295.
|
|
Robertson, W. M., D. B. Kluver, J. T. Allen, and E. J. Anderson, 2022: The Hydrologic Response to a Meteotsunami in an Isolated Wetland: Beaver Island in Lake Michigan, USA. J. Geophys. Res. Oceans, 127, doi: 10.1029/2022JC018611.
|
|
Sun, N., Z. Zhou, Q. Li, and J. Jing, 2022. Three-Dimensional Gridded Radar Echo Extrapolation for Convective Storm Nowcasting Based on 3D-ConvLSTM Model. Remote Sensing, 14, 4256, doi: 10.3390/rs14174256.
|
|
Wang, D., Jensen, M. P., Taylor, D., Kowalski, G., Hogan, M., Wittemann, B. M., et al., 2022. Linking synoptic patterns to cloud properties and local circulations over southeastern Texas. J. Geophys. Res. Atmos., 127, e2021JD035920, doi: 10.1029/2021JD035920.
|
|
Bell, J. R., K. M. Bedka, C. J. Schultz, A. L. Molthan, S. D. Bang, J. Glisan, T. Ford, W. S. Lincoln, L. A. Schultz, A. M. Melancon, E. F. Wisinski, K. Itterly, C. R. Homeyer, D. J. Cecil, C. Cogil, E. Lenning, R. Donavon, and R. Wolf, 2022. Satellite-Based Characterization of Convection and Impacts from the Catastrophic 10 August 2020 Midwest U.S. Derecho, Bull. Amer. Meteorol. Soc., 103, doi: 10.1175/BAMS-D-21-0023.1.
|
|
Homeyer, C. R., and K. P. Bowman, 2022. Algorithm Description Document for Version 4.2 of the Three-Dimensional Gridded NEXRAD WSR-88D Radar (GridRad) Dataset, Technical Report.
|
|
Logan, T., 2021. An Analysis of the Performance of the Houston Lightning Mapping Array During an Intense Period of Convection During Tropical Storm Harvey, J. Geophys. Res. Atmos., 126, e2020JD033270, doi: 10.1029/2020JD033270.
|
|
Li, J., Y. Qian, L. R. Leung, and Z. Feng, 2021. Summer Mean and Extreme Precipitation Over the Mid-Atlantic Region: Climatological Characteristics and Contributions From Different Precipitation Types, J. Geophys. Res. Atmos., 126, e2021JD035045, doi: 10.1029/2021JD035045.
|
|
Song, F., Z. Feng, L. R. Leung, B. Pokharel, S.-Y. S. Wang, X. Chen, K. Sakaguchi, and C. Wang, 2021. Crucial Roles of Eastward Propagating Environments in the Summer MCS Initiation Over the U.S. Great Plains, J. Geophys. Res. Atmos., 126, e2021JD034991, doi: 10.1029/2021JD034991.
|
|
Mecikalski, J. R., T. N. Sandmæl, E. M. Murillo, C. R. Homeyer, K. M. Bedka, J. M. Apke, and C. P. Jewett, 2021. A Random Forest Model to Assess Predictor Importance and Nowcast Severe Storms using High-Resolution Radar–GOES Satellite–Lightning Observations, Mon. Wea. Rev., 149, 1725–1746, doi: 10.1175/MWR-D-19-0274.1.
|
|
Lin, Y., J. Fan, J.-H. Jeong, Y. Zhang, C. R. Homeyer, and J. Wang, 2021. Urbanization-induced land and aerosol impacts on storm propagation and hail characteristics, J. Atmos. Sci., 78, 925–947, doi: 10.1175/JAS-D-20-0106.1.
|
|
Gaal, R., and J. L. Kinter III, 2021. Soil Moisture Influence on the Incidence of Summer Mesoscale Convective Systems in the U.S. Great Plains, Mon. Wea. Rev., 149, 3981–3994, doi: 10.1175/MWR-D-21-0140.1.
|
|
Cooney, J. W., Bedka, K. M., Bowman, K. P., Khlopenkov, K. V., and K. Itterly, 2021. Comparing tropopause-penetrating convection identifications derived from NEXRAD and GOES over the contiguous United States. J. Geophys. Res. Atmos., 126, e2020JD034319, doi: 10.1029/2020JD034319.
|
|
Homeyer, C. R., and K. P. Bowman, 2021. A 22-Year Evaluation of Convection Reaching the Stratosphere over the United States. J. Geophys. Res. Atmos., 126, doi: 10.1029/2021JD034808.
|
|
Brauer, N. S., J. B. Basara, P. E. Kirstetter, R. A. Wakefield, C. R. Homeyer, J. Yoo, M. Shepherd, and J. A. Santanello, 2021. The inland maintenance and reintensification of Tropical Storm Bill (2015). Part II: Precipitation microphysics, J. Hydrometeor., 22, 2695–2711, doi: 10.1175/JHM-D-20-0151.1.
|
|
Cui, W., X. Dong, B. Xi, and Z. Feng, 2021. Climatology of linear mesoscale convective system morphology in the United States based on the random-forests method, J. Clim., 34, 7257–7276, doi: 10.1175/JCLI-D-20-0862.1.
|
|
Feng, Z., L. R. Leung, N. Liu, J. Wang, R. A. Houze, J. Li, J. C. Hardin, D. Chen, and J. Guo, 2021. A global high-resolution mesoscale convective system database using satellite-derived cloud tops, surface precipitation, and tracking, J. Geophys. Res. Atmos., 126, doi: 10.1029/2020JD034202.
|
|
Homeyer, C. R., A. O. Fierro, B. A. Schenkel, A. C. Didlake, G. M. McFarquhar, J. Hu, A. V. Ryzhkov, J. B. Basara, A. M. Murphy, and J. Zawislak, 2021. Polarimetric signatures in landfalling tropical cyclones, Mon. Wea. Rev., 149, 131–154, doi: 10.1175/MWR-D-20-0111.1.
|
|
Hu, H., Z. Feng, and L. R. Leung, 2021. Linking flood frequency with mesoscale convective systems in the US, Geophys. Res. Lett., 48, doi: 10.1029/2021GL092546.
|
|
Jeong, J., J. Fan, and C. R. Homeyer, 2021. Spatial and temporal trends and variabilities of hailstones in the United States northern Great Plains and their possible attributions, J. Clim., 34, 6819–6840, doi: 10.1175/JCLI-D-20-0245.1.
|
|
Khlopenkov, K. V., K. M. Bedka, J. W. Cooney, and K. Itterly, 2021. Recent advances in detection of overshooting cloud tops from longwave infrared satellite imagery, J. Geophys. Res. Atmos., 126, doi: 10.1029/2020JD034359.
|
|
Li, J., Z. Feng, Y. Qian, and L. R. Leung, 2021. A high-resolution unified observational data product of mesoscale convective systems and isolated deep convection in the United States for 2004-2017, Earth Sys. Sci. Data, 13, 827–856, doi: 10.5194/essd-13-827-2021.
|
|
Murillo, E. M., C. R. Homeyer, and J. T. Allen, 2021. A 23-year severe hail climatology using GridRad MESH observations, Mon. Wea. Rev., 149, 945–958, doi: 10.1175/MWR-D-20-0178.1.
|
|
Tinney, E. N., and C. R. Homeyer, 2021. A 13-year trajectory-based analysis of convection-driven changes in upper troposphere lower stratosphere composition over the United States, J. Geophys. Res. Atmos., 126, doi: 10.1029/2020JD033657.
|
|
Wang, J., J. Fan, R. A. Houze Jr., S. R. Brodzik, K. Zhang, G. J. Zhang, and P. Ma, 2021. Using radar observations to evaluate 3-D radar echo structure simulated by the Energy Exascale Earth System Model (E3SM) version 1, Geosci. Model Dev., 14, 719–734, doi: gmd-14-719-2021.
|
|
Wang, J., and M. Zhang, 2021. A constrained data assimilation algorithm based on GSI hybrid 3D-EnVar and its application, Mon. Wea. Rev., 149, 3365–3378, doi: 10.1175/MWR-D-21-0052.1.
|
|
Homeyer, C. R., T. N. Sandmaæl, C. K. Potvin, and A. M. Murphy, 2020. Distinguishing Characteristics of Tornadic and Nontornadic Supercell Storms from Composite Mean Analyses of Radar Observations, Mon. Wea. Rev., 148, 5015–5040, doi: 10.1175/MWR-D-20-0136.1.
|
|
Coleman, A., and B. Ancell, 2020. Toward the Improvement of High-Impact Probabilistic Forecasts with a Sensitivity-Based Convective-Scale Ensemble Subsetting Technique, Mon. Wea. Rev., 148, 4995–5014, doi: 10.1175/MWR-D-20-0043.1.
|
|
Brauer, N. S., J. B. Basara, C. R. Homeyer, G. M. McFarquhar, and P. E. Kirstetter, 2020. Quantifying precipitation efficiency and drivers of excessive precipitation in post-landfall Hurricane Harvey, J. Hydrometeor., 21, 433–452, doi: 10.1175/JHM-D-19-0192.1.
|
|
Collins, E., Z. J. Lebo, and H. Morrison, 2020. Impacts of latent energy and snow fall speed on a wintertime midlatitude cyclone, J. Geophys. Res. Atmos., 125, doi: 10.1029/2020JD032655.
|
|
Jeong, J., J. Fan, C. R. Homeyer, and Z. Hou, 2020. Understanding hailstone temporal variability and contributing factors over the U.S. southern Great Plains, J. Clim., 33, 3947–3966, doi: 10.1175/JCLI-D-19-0606.1.
|
|
Molina, M. J., J. T. Allen, and A. F. Prein, 2020. Moisture attribution and sensitivity analysis of a winter tornado outbreak, Wea. Forecasting, 35, 1263–1288, doi: 10.1175/WAF-D-19-0240.1.
|
|
Murphy, A. M., A. Ryzhkov, and P. Zhang, 2020. Columnar vertical profile (CVP) methodology for validating polarimetric radar retrievals in ice using in situ aircraft measurements, J. Atmos. Oceanic Technol., 37, 1623–1642, doi: 10.1175/JTECH-D-20-0011.1.
|
|
Pan, B., Y. Wang, T. Logan, J. Hsieh, J. H. Jiang, Y. Li, and R. Zhang, 2020. Determinant role of aerosols from industrial sources in Hurricane Harvey's catastrophe, Geophys. Res. Lett., 47, doi: 10.1029/2020GL090014.
|
|
Phoenix, D. B., C. R. Homeyer, M. C Barth, and S. B. Trier, 2020. Mechanisms Responsible for Stratosphere-to-Troposphere Transport around a Mesoscale Convective System Anvil, J. Geophys. Res. Atmos., 125, doi: 10.1029/2019JD032016.
|
|
Schumacher, R. S., and K. L. Rasmussen, 2020. The formation, character and changing nature of mesoscale convective systems, Nature Rev. Earth Environ., 1, 300–314, doi: 10.1038/s43017-020-0057-7.
|
|
Starzec, M., G. L. Mullendore, and C. R. Homeyer, 2020. Retrievals of convective detrainment heights using ground-based radar observations, J. Geophys. Res. Atmos., 125, doi: 10.1029/2019JD031164.
|
|
Tian, J., X. Dong, B. Xi, and Z. Feng, 2020. Characteristics of ice cloud-precipitation of warm season mesoscale convective systems over the Great Plains, J. Hydrometeor., 21, 317–334, doi: 10.1175/JHM-D-19-0176.1.
|
|
Jeyaratnam, J., J. F. Booth, C. M. Naud, Z. J. Luo, and C. R. Homeyer, 2020. Upright convection in extratropical cyclones: A survey using ground-based radar data over the United States. Geophys. Res. Lett., 47, doi: 10.1029/2019GL086620.
|
|
McGovern, A., R. A. Lagerquist, D. J. Gagne, G. E. Jergensen, K. L. Elmore, C. R. Homeyer, and T. Smith, 2019. Making the black box more transparent: Understanding the physical implications of machine learning, Bull. Amer. Meteorol. Soc., 100, 2175–2199, doi: 10.1175/BAMS-D-18-0195.1.
|
|
Zhang, Y., J. Fan, T. Logan, Z. Li, and C. R. Homeyer, 2019. Wildfire impact on environmental thermodynamics and severe convective storms, Geophys. Res. Lett., 46, 10,082–10,093, doi: 10.1029/2019GL084534.
|
|
Feng, Z., R. A. Houze Jr., L. R. Leung, F. Song, J. C. Hardin, J. Wang, W. I. Gustafson Jr., and C. R. Homeyer, 2019. Spatiotemporal Characteristics and Large-scale Environments of Mesoscale Convective Systems East of the Rocky Mountains, J. Climate, 32, 7303–7328, doi: 10.1175/JCLI-D-19-0137.1.
|
|
Song, F., Z. Feng, L. R. Leung, R. A. Houze Jr., J. Wang, J. Hardin, and C. R. Homeyer, 2019. Contrasting Spring and Summer Large-Scale Environments Associated with Mesoscale Convective Systems over the U.S. Great Plains, J. Climate, 32, 6749–6767, doi: 10.1175/JCLI-D-18-0839.1.
|
|
Wang, J., R. A. Houze, Jr., J. Fan, S. R. Brodzik, Z. Feng, and J. C. Hardin, 2019. The Detection of Mesoscale Convective Systems by the GPM Ku-Band Spaceborne Radar, J. Met. Soc. Japan, 97, 1059–1073, doi: 10.2151/jmsj.2019-058.
|
|
Tang, B. H., V. A. Gensini, and C. R. Homeyer, 2019. Trends in United States large hail environments and observations, npj Clim. Atmos. Sci., 2, doi: 10.1038/s41612-019-0103-7.
|
|
Sandmæl, T. N., C. R. Homeyer, K. M. Bedka, J. M. Apke, J. R. Mecikalski, and K. Khlopenkov, 2019. Evaluating the Ability of Remote Sensing Observations to Identify Significantly Severe and Potentially Tornadic Storms, J. Appl. Meteor. and Climatol., 58, 2569–2590, doi: 10.1175/JAMC-D-18-0241.1.
|
|
Thielen, J. E., and W. A. Gallus, 2019. Influences of horizontal grid spacing and microphysics on WRF forecasts of convective morphology evolution for nocturnal MCSs in weakly forced environments, Wea. Forecasting, 34, 1495–1517, doi: 10.1175/WAF-D-18-0210.1.
|
|
Wang, J., R. A. Houze, Jr., J. Fan, S. R. Brodzik, Z. Feng, And J. C. Hardin, 2019. The detection of mesoscale convective systems by the GPM Ku-band spaceborne radar, J. Met. Soc. Japan, 97, 1059–1073, doi: 10.2151/jmsj.2019-058.
|
|
Murillo, E. M., and C. R. Homeyer, 2019. Severe Hail Fall and Hail Storm Detection using Remote Sensing Observations,, J. Appl. Meteor. and Climatol., 58, 947–970, doi: 10.1175/JAMC-D-18-0247.1.
|