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1 Introduction

1.1 Objective

The objective of this document is to describe the algorithms used to produce Version 4.2 of the three-
dimensional Gridded NEXRAD WSR-88D Radar data. This data set is referred to as GridRad. Additional
information is available at GridRad.org. Two collections of v4.2 GridRad data are available for download
from the Research Data Archive of the National Center for Atmospheric Research: an hourly archive of
warm-season data (April through August) for 2008 – 2021 (ds841.1) and an archive of selected severe
weather events from 2010 – 2021 (GridRad-Severe; ds841.6).

1.2 Scope

The scope of this document is a detailed outline of the characteristics of NEXRAD WSR-88D Level 2
(i.e., native volume scan) data, the computational steps used to merge Level 2 data onto large-area grids,
and recommended use of the GridRad data produced by these methods. Individuals may leverage the detail
within this document to reproduce the GridRad methods or reference it when analyzing the publicly available
dataset to ensure proper scientific understanding and evaluation. Example code for reading and quality-
controlling GridRad data is also provided.

1.3 Executive Summary for GridRad v3.1 Users

Users of v3.1 data who have reviewed the corresponding Algorithm Description Document in detail will
want to focus attention on §3.3 and §3.4 of this document for the most significant algorithm differences in
v4.2. For convenience, the following list is a summary of key changes from v3.1 to v4.2:

• The analysis domain now extends from 125◦W to 66◦W longitude and 24◦N to 50◦N latitude, which
includes all of the contiguous United States.
• The horizontal grid has been changed from 50 points per degree longitude-latitude (0.02◦ spacing)

in v3.1 to 48 points per degree (∼0.02083◦) in v4.2. This change allows for more flexible area-
averaging of the data for statistical analysis and has negligible impact on the level of detail captured
in the GridRad data.
• The vertical grid resolution in the lowest 7 km of the GridRad volumes has been increased from 1 to

0.5 km. The top of the volumes has been reduced from 24 to 22 km. As a result, the total number of
vertical levels has increased from 24 to 29.
• All Level 2 volumes are interpolated (if necessary) to a standard polar grid prior to binning onto the

GridRad Cartesian grid. The standard grid has an azimuthal grid spacing of 0.5◦ and a range/radial
grid spacing of 0.25 km, which is the highest-resolution Level 2 grid available for the current period
of record.
• The maximum time difference from the GridRad analysis time allowed for binning was increased

slightly from ±3.8 min to ±5 min. No change has been made to the weighting function used for
binning.
• A list of individual elevation scans from each contributing radar is contained in the v4.2 GridRad files

rather than the names of entire Level 2 volumes.
• In addition to the radar reflectivity at horizontal polarization, the radial velocity spectrum width is

included in all GridRad v4.2 files. Additional kinematic variables (based on radial velocity) and dual-
polarization variables are included in the GridRad-Severe data.
• The recommended quality control techniques have been simplified.
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2 NEXRAD WSR-88D Data

The U.S. operational weather radar system, now known as the Next Generation Weather Radar (NEXRAD)
program, was created in 1957. Beginning in 1988, the network was upgraded to Doppler S-band (10–11.1
cm wavelength) horizontal-polarization radars (Weather Surveillance Radar 1988 Doppler or WSR-88D) to
measure the radial velocity VR and the velocity spectrum width σV in addition to the radar reflectivity factor
ZH (Crum and Alberty, 1993). From 2011 to 2013, the WSR-88D systems were further upgraded to obtain
measurements at both horizontal (H) and vertical (V) polarization. The added dual-polarization (polarimet-
ric) variables are the differential radar reflectivity ZDR, the differential propagation phase shift φDP, and
the co-polar correlation coefficient ρHV. The polarimetric variables provide information on the size, shape,
and concentration of hydrometeors. There are now 143 operational WSR-88D radars in the contiguous U.S.
(CONUS) providing nearly continuous coverage of storm systems and their microphysical characteristics.
Figure 1 shows the locations of these radars and their combined coverage at the lowest scanned altitudes.

Data from operational NEXRAD WSR-88D radars are archived at the National Centers for Environ-
mental Information (NCEI, formerly the National Climatic Data Center) and Amazon Web Services (AWS)
for the period from 5 June 1991 to the present, although data availability for most current systems in the net-
work begins in 1995. The archives include the native three-dimensional data from each radar system (Level
2 data), which are provided on a spherical grid (azimuth, elevation, and range) with its origin at the radar
location. Observations from individual systems are subject to some outages and interruptions, but these are
typically limited to a few days each year. In general, data gaps are more frequent during years prior to 2005
(see Fig. 3 in Homeyer and Bowman, 2021).

The resolution of each radar observation depends on the operating mode (meteorological target) and
year. In particular, the number of elevation angles in a volume can be as high as 14 for convection and as
low as 5 for clear air or shallow precipitating systems. Select combinations of elevation angles are referred
to as Volume Coverage Patterns (VCPs), with each unique VCP accompanied by a number code. Convec-
tion is typically sampled using VCP-11 or VCP-12 (or one of their derivatives), both of which contain 14
elevation angles and, in recent years, repeated scans of the lowest few elevations during each volume to pro-
vide more rapid updates of storms and related hazards. VCP-12 is often the preferred VCP for convection
in recent years. Winter storms (or other shallow precipitation) are typically sampled using VCP-21 (or one
of its derivatives), which contains 9 elevation angles. The elevation angles typical of these three VCPs are
provided in Table 1. For more information on NEXRAD scanning strategies and characteristics, the reader
is directed to Part C of the Office of the Federal Coordinator for Meteorology (OFCM) Federal Meteorolog-
ical Handbook No. 11 (OFCM, 2006).

Operating Mode Elevation angles (◦)
VCP-11 0.50, 1.45, 2.40, 3.35, 4.30, 5.25, 6.20, 7.50, 8.70, 10.0, 12.0, 14.0, 16.7, 19.5
VCP-12 0.50, 0.90, 1.30, 1.80, 2.40, 3.10, 4.00, 5.10, 6.40, 8.00, 10.0, 12.5, 15.6, 19.5
VCP-21 0.50, 1.45, 2.40, 3.35, 4.30, 6.00, 9.00, 14.6, 19.5

Table 1: Elevation angles of the three most common VCPs employed when NEXRAD WSR-88D radars
sample precipitation: VCP-11, VCP-12, and VCP-21.

Data storage requirements for NEXRAD data have changed over time due to changes in the spatial grid
resolution and the introduction of new measurement variables. Data from the period prior to May of 2008
are stored at an azimuthal resolution of 1◦ and a range resolution of 1 km. Beginning in May of 2008 the
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Figure 1: Map of NEXRAD WSR-88D radars within the CONUS and their lowest sampled alti-
tudes for only those altitudes less than 10,000 ft AGL (∼3 km). Credit: NOAA, available online at
https://www.roc.noaa.gov/WSR88D/Maps.aspx.

radars transitioned to a range resolution of 250 m and an azimuthal resolution of 0.5◦ for the lowest 3-5
elevations (referred to as “super-resolution”). The addition of polarimetric variables has also increased the
volume of archived data. A single WSR-88D volume scan of deep convection prior to 2008 includes only
three variables (ZH, VR, and σV) on the coarser spherical grid (1 deg × 1 km × 14 elevations) and has a
file size of ∼15 MB. In comparison, a similar current observation with the additional polarimetric variables
(ZDR, φDP, and ρHV) on the higher-resolution spherical grid has a file size of ∼45 MB, which is a factor of
3 larger than the earlier files. As a result of the large data volume, data storage and handling is a significant
challenge for studies of longer periods. For example, the entire Level 2 archive includes 160 radars and
requires ∼55 TB of data storage per year for recent years (https://www.ncdc.noaa.gov/nexradinv/stats.jsp).

Several previous efforts in addition to v3.1 of GridRad have attempted to improve the utility of NEXRAD
data by merging observations from multiple radars onto three-dimensional Earth-referenced grids (typically
longitude, latitude, and altitude; hereafter ‘gridded’ data), including the NOAA MRMS and related MY-
RORSS activities. This can reduce storage requirements and make the data easier to use. The overlapping
observations from multiple NEXRAD WSR-88D radars also allow for a three-fold increase in vertical sam-
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VCP-11
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Z < 10 km Z < 20 km

Figure 2: Maps of the combined vertical sampling of merged radar volumes using data out to 300 km in
range from radars within the NEXRAD WSR-88D network. The left and right columns show average vertical
sampling within the 0-10 km and 0-20 km AMSL altitude layers, respectively. Vertical sampling is computed
assuming all contributing radars are operating in (top) VCP-11, (middle) VCP-12, and (bottom) VCP-21.
The locations of individual radars (white dots) and the GridRad domain (thick black box) are superimposed.

pling compared to an individual radar (i.e., the vertical resolution ∆z can be increased from 3 km on average
to less than 1 km), which provides an important improvement in the utility of NEXRAD data for research.
For example, Figure 2 shows the combined vertical sampling in altitude layers of 0-10 km and 0-20 km
AMSL from merging of NEXRAD WSR-88D Level 2 data assuming individual radars are operating in each
of the three typical VCPs, as outlined above. These improvements in the utility of NEXRAD data through
multi-radar merging motivate the development of the GridRad dataset. The following section outlines the
methods employed to create GridRad data.
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3 GridRad Algorithm

3.1 Overview

Merging individual NEXRAD WSR-88D volumes onto a common large-area grid can be a somewhat com-
plicated process that depends on the radar variable being merged and its intended use when complete. Es-
tablished alternative approaches to that outlined here exist, such as those employed in the Multi-Radar,
Multi-Sensor (MRMS) system produced operationally within the NOAA National Severe Storms Labo-
ratory (NSSL). This section is meant to outline the common steps for merging any radar variable in the
GridRad dataset and additional steps for radar variables that require unique treatment during one or more of
the common steps of the process.

In the following we distinguish between the observations from a single radar, which are made on a
spherical polar coordinate grid with the radar located at the origin, and the GridRad data, which are defined
on a regular longitude-latitude-altitude grid. A Level 2 radar volume is an observation made by a single
radar at a given azimuth, elevation, and range or ‘gate’. A GridRad volume is a rectangular volume in
longitude, latitude, and altitude1. The GridRad analysis domain extends from 235◦E to 294◦E (125◦W to
66◦W) longitude, 24◦N to 50◦N latitude, and 0.52 to 22 km in altitude above mean sea level (AMSL). The
grid resolution is 48 grid points per degree of longitude or latitude (∼0.02083◦) and 0.5 or 1 km in altitude.
For the latitude range of the analysis domain, the physical size of the grid boxes is∼1.5 km ×∼2 km × 0.5
or 1 km. The altitude grid spacing is 0.5 km in the lowest 7 km AMSL and 1 km above. The centers of the
GridRad volumes (xi, yj , zk) are given by

xi = x0 + (i+ 0.5) · δx, i = 0, . . . , Nx − 1
yj = y0 + (j + 0.5) · δy, j = 0, . . . , Ny − 1
zk = 0.5, . . . , 7.0, 8.0, . . . , 22.0, k = 0, . . . , 13, 14, . . . , 28

(1)

where xi is longitude in degrees east, δx = δy = 1◦/48, yj is latitude in degrees north, and zk is altitude
in km. The full CONUS GridRad grid has x0 = 235◦E, Nx = 2832, y0 = 24◦N, and Ny = 1248 (∼102.5
million grid volumes). For any given analysis a large majority of the grid volumes have no observable radar
echo. To reduce the storage space required, a sparse storage scheme is used (see §5).

The GridRad algorithm is a four-dimensional binning (averaging) procedure that merges multiple Level
2 radar volumes to estimate radar variables within the GridRad volumes at a desired analysis time (typically
at 5-min or hourly intervals). The Level 2 observations are weighted by their distance from the radar and by
the time difference between the observation and analysis time.

3.2 Procedure

Creation of GridRad data follows a 4-step procedure that is repeated for each contributing Level 2 volume:

1. Read NEXRAD WSR-88D Level 2 observation in polar coordinates (i.e., azimuth, elevation, and
range relative to the radar location).

2. Identify common GridRad volumes in which to bin the Level 2 observations.

3. Compute space-time weights of each Level 2 grid volume.

1Technically the GridRad volumes are defined in Earth-centered spherical polar coordinates. Because the dimensions of a grid
box are small compared to the radius of the Earth, the individual grid volumes are effectively rectangular.

2The lowest altitude in the v4.2 hourly GridRad archive is 1 km.
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4. Compute weighted averages of radar variable(s) for all GridRad bins with valid data.

Note: Steps 2-4 are carried out for each azimuthal sweep (i.e., 360◦ scan at a single elevation) of a Level 2
volume and Step 4 is repeated for an azimuthal sweep when more than one radar variable is binned into the
common grid (e.g.,ZH and the polarimetric variableZDR). Each step is outlined in the following paragraphs.

Step 1. Read NEXRAD WSR-88D Level 2 observation in polar coordinates.

As outlined in §2, the characteristics of the NEXRAD WSR-88D Level 2 data have changed over time,
including the resolution of the polar grid, the scan strategy (i.e., vertical sampling), and the radar variables
observed. These changes affect the quality of the data beyond that due to the pulse frequency and power of
the radar beam, which are often the most important elements to consider when merging multiple radars of
the same wavelength onto a common grid. In particular, the maximum unambiguous range of a NEXRAD
WSR-88D radar depends on the variable observed and transmitted pulse repetition frequency. VR and σV are
only observed out to 230 km in range in the older, lower resolution Level 2 data and out to 300 km in range
in the more recent, higher resolution volume scans (i.e., since mid-2008). On the other hand, ZH is observed
out to 460 km in range throughout time. The polarimetric variables (ZDR, φDP, and ρHV), available from
all NEXRAD WSR-88D radars since early 2013, are observed out to 300 km in range.

Considering the above limitations of NEXRAD WSR-88D sampling and the goal of a merged dataset
to improve spatial coverage from the overlapping of neighboring radars, only observations out to 300 km
in range from each radar and within 5 min of the analysis time are merged by the GridRad procedure. The
time limit is imposed to prevent excessive smoothing of GridRad data due to time averaging. In addition,
because the space and time resolution of the Level 2 spherical grids (and ultimately, the number of gates
that can be merged) varies over time, all volumes are linearly interpolated (if necessary) to a common polar
grid with an azimuthal spacing of 0.5◦ and a range spacing of 250 m upon reading. The longitude, latitude,
and altitude relative to the geoid are computed for each Level 2 radar volume using simple geometry that
accounts for the spherical shape of the Earth and assumes the standard index of refraction for the atmosphere
in the vertical (e.g., see Chapter 2 in Doviak and Zrnić, 1993). The central time of each azimuthal sweep is
used for binning purposes (azimuthal sweeps are typically completed in ∼20 s by NEXRAD radars when
sampling precipitation). To ensure that all usable data are included, Level 2 volume scans within ±10 min
of the GridRad analysis time are examined for azimuthal sweeps that fall within the ±5 min time window.

Step 2. Identify Level 2 radar volumes that contribute to each common grid volume.

The Earth-referenced coordinates computed in Step 1 are used to find the radar volumes that contribute
to each GridRad grid volume. Because the NEXRAD WSR-88D beam is conical, with an average angu-
lar beam width of 0.95◦, the volume observed by the radar increases with range. In the horizontal, Level
2 radar volumes are assumed to contribute only to the nearest GridRad column. In altitude, each Level 2
radar volume may contribute to more than one GridRad volume, depending on range from the radar. The
beam width is taken to be the full width at half maximum of the transmitted beam power. Thus, despite
the increasing size of the radar beam with increasing range, the majority of the returned power comes from
targets near the beam center (e.g., a collection of precipitation-sized hydrometeors). This results in relatively
small differences in the radar variables when measured at small and large distances from a radar, as long as
the scatterers are somewhat homogeneous within the field of view (e.g., see Figure 5 in Homeyer (2014)).
Nevertheless, it is not appropriate to treat observations made at significantly different ranges from a radar
equivalently when merging data onto a common grid. While this treatment is primarily handled through
weighting of the individual Level 2 radar volumes in space and time (see Step 3 below), we also set an
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upper limit to altitude assignments of the beam in the averaging procedure. In particular, we do not allow
an individual Level 2 radar volume to contribute to a depth larger than 0.75 km at altitudes below 7 km
AMSL and a depth larger than 1.5 km aloft (up to three 1-km grid volumes). This limit reduces the potential
contribution of radar observations beyond a range of ∼40 (∼90) km (i.e., the point at which the NEXRAD
WSR-88D beam depth – and similarly, width – reaches 0.75 (1.5) km; see Fig. 4 below). This restriction
prevents excessive smoothing of the GridRad data from observations made at large ranges, which can lead
to both the loss of important detail from contributing observations at smaller ranges from a radar and an
exaggeration of the spatial extent of echo. One result of this restriction is that ring-shaped sampling artifacts
are visible in the gridded data at larger ranges (i.e., where radar conical scans intersect horizontal GridRad
surfaces), but this is unavoidable due to the resolution and sampling strategies of the radars.

Step 3. Compute space-time weights of each Level 2 polar grid volume.

The approach of distance-weighting has been explored in previous studies that merge individual radar
volumes onto a common grid and is used primarily to retain spatial scales that are adequately sampled from
one radar while preventing retention of corresponding observations from additional radars that are under-
sampled (e.g., Trapp and Doswell, 2000; Zhang et al., 2005; Langston et al., 2007). The GridRad algorithm
uses Gaussian weighting in space and time. The weight w is

w(r, t) = e−r
2/L2

e−∆t2/τ2 , (2)

where r is the radial distance of the polar grid volume (3D slant range) from the radar location in kilome-
ters, L = 150 km is the spatial scale, ∆t is the time difference between the azimuthal-scan time and GridRad
analysis time in seconds, and τ = 150 s is the time scale. Figure 3 shows this weighting function out to
300 km in range from a radar and 300 s in time from the GridRad analysis. Sensitivity tests (not shown)
demonstrate that changes in the internal microphysical characteristics of a storm from varying L or τ are
minimal for values less than 150 km (or s), while values significantly greater than these thresholds show
much less detail (i.e., excessive smoothing).

0 50 100 150 200 250 300
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100

150

200

250

300
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1.00
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Figure 3: Contour plot of the space-time weighting applied to NEXRAD WSR-88D Level 2 observations in
the GridRad binning procedure.
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Step 4. Bin radar variable(s) scaled by space-time weights into common grid.

The final step of the GridRad algorithm involves merging multiple observations of a given radar variable
into the common grid volumes (i.e., ‘bins’) of the GridRad domain. In the Level 2 data, each radar volume on
the polar grid is flagged to indicate whether a valid measurement was made and whether echo was detected.
The value of a radar variable V on the GridRad grid is equal to the weighted average of all observations in
which echo was detected

V (xi, yj , zk) =

Necho∑
n=1

wn vn

Necho∑
n=1

wn

, (3)

where Necho is the number of Level 2 radar volumes with echo that contribute to the grid volume at location
(xi, yj , zk), wn = w(rn, tn) is the space-time weight of the nth Level 2 radar volume on its polar grid (from
Equation 2 and Figure 3 above), and vn is the value of the observed radar variable for the nth Level 2 radar
volume. The total weight W is

W (xi, yj , zk) =
Necho∑
n=1

wn . (4)

Thus the GridRad data are averages conditioned on whether echo is observed. Though generally advan-
tageous for all radar variables, this space-time weighting approach is especially beneficial for estimating
polarimetric variables, which can be significantly degraded at far ranges where the minimum detectable ZH

increases and the signal-to-noise ratio becomes small. Prescribing less weight to distant scans with poten-
tially degraded data quality mitigates possible detrimental effects on the resulting GridRad analysis.

The result of the binning process is two parameters for each radar variable: the weighted average V
(e.g., ZH) and the sum of the weights W . Two additional parameters that are useful for post-processing
quality control are also archived: Nobs, which is the number of valid Level 2 radar volumes that observed
each GridRad volume (with or without echo), andNecho. W is also useful for quality control as it represents
a measure of the intrinsic resolution and/or sampling within a given GridRad volume. The sum weight W
indicative of a well-sampled v4.2 GridRad volume is ∼1.5.

3.3 Merging of the Polarimetric Variables

When the polarimetric variables ZDR, φDP, and ρHV are routinely available (i.e., 2013 to the present), they
can be merged into the GridRad volumes. At present, the only public v4.2 dataset that includes polarimetric
variables is the GridRad-Severe archive. Merging of the polarimetric variables requires some unique proce-
dures during the common 4-step GridRad procedure, which are outlined in this section. First, since φDP is
a measure of the cumulative relative phase shifting of the H and V beams as they propagate away from and
back to the radar, measurements of φDP at a particular location from radars with different viewing paths are
fundamentally different quantities. The local contribution to φDP is estimated from the specific differential
phase, defined as:

KDP =
1

2

∂φDP

∂r
. (5)
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One important limitation ofKDP, however, is that instantaneous observations can suffer from a considerable
amount of random noise, particularly in light rain or ice. Despite this limitation, studies have shown that
time and space averaging of KDP (an intrinsic property of the GridRad binning method) largely removes
this noise and provides some of the most accurate radar-derived estimations of precipitation (e.g., Ryzhkov
et al., 2005b; Borowska et al., 2011).

KDP fields can be noisy, due in part to calculating the derivative of an already noisy variable. The
problem is largest when small radial path lengths are used or φDP is not smoothed before computing the
range derivative. In the GridRad procedure, noise in φDP is reduced through application of a 7.5-km radial
running-mean (boxcar) filter. The radially smoothed φDP fields are then used to compute KDP using cen-
tered differencing at each 0.25-km radar gate. These KDP values are then merged into the GridRad analysis
using the common 4-step method.

The second polarimetric variable that requires special treatment is ZDR. Systematic biases in ZDR

(i.e., those resulting from inadequate radar maintenance and calibration) are unfortunately common in the
NEXRAD WSR-88D observations (e.g. Cunningham et al., 2013; Homeyer and Kumjian, 2015). These
biases can introduce unphysical variations and/or offsets in the GridRad output that adversely affect analy-
ses of the data. In order to create useful ZDR volumes, an approach for bias correction must be employed
prior to Step 4 of the GridRad procedure. Following that outlined in detail in Homeyer and Kumjian (2015),
GridRad uses an objective natural scatterer approach (e.g., Ryzhkov et al., 2005a; Melnikov et al., 2011,
2013). While the preferred approach for bias correction in polarimetric radar observations is a so-called “en-
gineering method” (see Melnikov et al. (2003) for an outline of the ideal NEXRAD WSR-88D approach),
such a method can only be carried out if information on the performance of all components of the radar is
available (i.e., transmitted power, gain, and noise in the H and V polarized beams). Such information is not
archived in the Level 2 volumes, so a natural scatterer method (or a similar approach) must be used instead.

In the GridRad procedure, ZDR bias correction is performed for each Level 2 volume immediately
prior to Step 4 of the common procedure. In particular, gates in each Level 2 volume lying above the
environmental freezing (i.e., 0◦C) level with ZH values ranging from 20 to 30 dBZ and ρHV values greater
than 0.95 (to isolate snow aggregates) are found and the median ZDR of these gates is compared to a value
of 0.36 dB. The difference between the median ZDR of the gate sample and the reference value of 0.36 dB
is then assumed as the bias for correcting ZDR throughout the Level 2 volume. The 0.36 dB reference value
is based on an analysis of a small sample of NEXRAD WSR-88D observations that were corrected using
engineering methods (see extended discussion and presentation in Homeyer and Kumjian (2015)). Archived
v4.2 GridRad data uses hourly freezing level heights from the ERA5 reanalysis for reference during ZDR

bias correction (10.24381/cds.adbb2d47), which are linearly interpolated in space and time to each radar
observation.

3.4 Merging of the Kinematic Variables

As outlined in §2, the kinematic variables radial velocity VR and velocity spectrum width σV have always
been measured by the NEXRAD WSR-88D radars, though they are observed at farther ranges since mid-
2008. These variables provide valuable additional information for the analysis of storms, especially those
producing severe and/or hazardous weather. However, there are some unique challenges to merging such
data (particularly VR) onto a common grid. The single biggest challenge is that VR is a measure of the
motion of precipitation-sized particles toward and away from the radar, such that any given measurement
has a unique geometry and thus is not directly comparable to a measurement made at the same location from
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a different radar (similar to the dilemma for φDP outlined in §3.3). Thus, merging of information contained
in VR is not a simple process. In GridRad, we instead merge two derivatives of VR: 1) the azimuthal deriva-
tive (azimuthal shear) and 2) the radial divergence (where the leading component is the radial derivative).
Multiple quality control steps are undertaken prior to computing the derivatives for merging during Step 1
of the GridRad procedure, outlined extensively in Sandmæl et al. (2019) and summarized briefly below.

First, since VR is prone to large errors in magnitude and sign due to aliasing (i.e., winds that exceed the
maximum detectable VR at a given operating frequency – the Nyquist velocity – and become “folded”), they
must be de-aliased prior to computing the derivatives. In order to accomplish this necessary quality control
step, we employ the Python ARM Radar Toolkit (Py-ART; Helmus and Collis, 2016). Py-ART provides
multiple de-aliasing techniques, some that require a reference atmospheric wind profile and others that do
not. For use in GridRad, we invoke a Py-ART routine that does not require a reference atmospheric wind
profile and is computationally more efficient than alternative approaches – dealias region based –
which accomplishes de-aliasing by modeling the problem as a dynamic network reduction.

Following de-aliasing, random fluctuations of VR in each azimuthal sweep are further suppressed using
a 3x3 median filter and a 5-gate running-mean (boxcar) range filter prior to computing derivatives (in that
order). As with KDP, centered differencing is employed to compute azimuthal shear and radial divergence.
While the scales for differencing are constant in range for each Level 2 volume, the spatial resolution of
azimuthal sampling is not. Thus, azimuthal shear is computed at a changing spatial resolution with range.
Figure 4 demonstrates this characteristic for azimuthal sweeps with 0.5 and 1.0 degree sampling, where az-
imuthal shear (a partial measure of vertical vorticity, or rotation) is resolved at a scale of twice this sampling
resolution. Though it is possible to apply an adjustment to azimuthal shear to account for changing spatial
resolution with range (if a characteristic diameter circulation is assumed), the GridRad procedure does not
include such an adjustment but, rather, leaves emphasis of scaling to the space-time weight each observa-
tion carries in the common gridded volume. The expected worst-case uncertainty of azimuthal shear and
radial divergence calculations is 0.004 s−1 (though typically much smaller) and the minimum resolvable
scales of circulations (vortices) range from 2-6 km. It is worth reiterating here that all NEXRAD Level 2
observations are placed on a common polar grid with 0.5◦ azimuthal and 0.25-km radial grid spacing prior
to being ingested into the v4.2 GridRad binning procedure, which helps mitigate some of the coarsening of
VR information during derivative calculation.
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Figure 4: Azimuthal sampling (in km) as a function of range for NEXRAD WSR-88D scans taken at 1◦ (thick
black line) and 0.5◦ (thick gray line) intervals. The light gray color-filled portion of the range represents the
added information available in Level 2 volumes following the upgrade to super-resolution in 2008. Note:
the azimuthal sampling for sweeps with 1◦ intervals shown here is nearly equivalent to the beam width/depth
as a function of range (i.e., the gate resolution) given that the average beamwidth of a NEXRAD WSR-88D
radar is 0.95◦.
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4 Data Quality

The gridded radar variables output by the GridRad procedure have some intrinsic characteristics and limi-
tations set by the original scales of the contributing NEXRAD WSR-88D Level 2 gates, the availability of
data, common artifacts present in the observations, and the gridding procedure employed. For brevity, an
outline of the expected resolution of the data and a description of the most common sources of error are
provided in the following subsections.

4.1 Resolution

As discussed at various points in §2 & §3 above, individual grid volumes (or gates) in NEXRAD Level 2
data exist at a resolution of ∆r × `(r)2, where `(r) is the beam width/depth as a function of range. For
observations that carry the vast majority of weight in GridRad output (i.e., see Fig. 3), these grid volumes
are 1 km × (≤3)2 km2 in observations prior to 2008 and 0.25 km × (≤3)2 km2 in observations follow-
ing the super-resolution upgrade. Though the finer horizontal dimension of the observations is ≤1 km, the
process of merging involves collecting data from multiple viewing angles at a point and averaging them
together. Such a process leads to a loss of information at the finest resolved scales (i.e., smoothing), a re-
duction in noise (error), and a mean resolution similar to the larger dimension of the Level 2 radar volume
(for NEXRAD WSR-88D observations this is the cross-beam dimension `(r), except when r is small). The
potential loss of information is one of the main motivating factors for applying distance-weighting to con-
tributing observations in a multi-radar dataset. Weighting observations from nearby radars higher than those
from distant radars preserves the higher resolution data. Given the rapid decrease in space-time weight as a
function of range applied to Level 2 gates in the GridRad procedure, the gridded radar variables produced
are expected to have an average horizontal resolution similar to the common grid spacing: ∼2 km.

Vertical resolution of GridRad data is primarily influenced by two factors: 1) the combined vertical
sampling from neighboring radars, and 2) the beam depth `(r). The combined vertical sampling and cover-
age within the NEXRAD WSR-88D network is greatest (typically ∼0.5 to 1 km, depending on the VCP of
contributing radars; see Fig. 2) where the mean range of a grid point from contributing radars is ∼130 km,
which corresponds to an average beam depth of ∼2 km. As a result, the combined vertical sampling from
multiple radars typically exceeds the native resolution of Level 2 gates by a factor of two or more. Given
this characteristic and the strict 0.75 or 1.5 km contributing depth limit of a Level 2 gate in Step 2 of the
GridRad procedure, the gridded radar variables produced are expected to have an average vertical resolution
of 1-2 km, also similar to the vertical spacing of the common grid.

To better demonstrate these expected resolutions of the GridRad data, two example data comparisons
with observations from similar systems made at finer spatiotemporal resolution are provided here. For both
comparisons, the GridRad data have been quality controlled using the filtering method outlined in §5.1.
First, a comparison with 1-minute observations taken by a vertically pointing S-band radar operated during
the Midlatitude Continental Convective Clouds Experiment is shown (MC3E; Jensen et al., 2016). Four
NEXRAD radars contribute to the GridRad data at the location of the MC3E radar, made at distances of
about 60, 120, 140, 180 km from their locations. Figure 5 shows vertical time curtains of ZH from the MC3E
observations and from GridRad data made at 1-min frequency over a time period of 17.5 hours. The MC3E
data are shown i) in their native form (an altitude resolution ∆z of 62.5 m; Fig. 5a) and ii) following altitude
(1.125-km running mean) and time (±5-min Gaussian) smoothing in an effort to mimic the GridRad binning
procedure (Fig. 5c). Note that there are some scanning artifacts at and above the echo top in the MC3E data,
mostly prior to 400 minutes past 00:00 UTC. This comparison reveals two important characteristics of the
GridRad data. First, the finer vertical resolution of the MC3E data is clear, with the ZH maximum coincident
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Figure 5: Vertical time curtains of ZH from (a) a vertically pointing S-band Doppler radar stationed at the
DOE-ARM measurement site in Lamont, Oklahoma during MC3E, (b) GridRad data created at equivalent
time resolution, and (c) vertically pointing S-band radar data smoothed in altitude and time at scales con-
sistent with the GridRad procedure. These observations were taken from 00:00 to 17:30 UTC on 20 May
2011. The GridRad echo boundary is superimposed in (a) to enable direct comparison (gray line).

with the melting level (the so-called “bright band”) well-defined in stratiform rain regions in the MC3E data
and less defined in the GridRad data (e.g., between altitudes of 3 and 4 km prior to 550 min and after 650
min). The magnitude of ZH is also commonly ∼5 dBZ lower in GridRad data, though such differences
are largely reduced if the MC3E data is smoothed to emulate the GridRad binning procedure. Furthermore,
remaining differences following smoothing of the MC3E data would likely be reduced further if the intrinsic
horizontal smoothing of GridRad data could be reproduced (this is impossible because the MC3E data is a
point measurement). Second, though differences in ZH are apparent, the echo boundaries (i.e., echo top and
bottom) are largely consistent between the two datasets. The contributing depth restriction imposed during
Step 2 of the GridRad procedure is largely responsible for such agreement.
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The second dataset comparison provided here demonstrates the potential for multi-sensor analyses using
GridRad data and similar datasets from space-based sensors obtained at higher space and time resolution.
In particular, Figure 6 shows vertical profiles taken by the Cloud-Aerosol Lidar with Orthogonal Polariza-
tion (CALIOP) aboard the CALIPSO satellite (Winker et al., 2009) and the Cloud Profiling Radar (CPR)
aboard the CloudSat satellite (Stephens et al., 2002), both of which operate in close succession within the
shared orbit of the NASA Afternoon constellation of satellites (or A-Train). The GridRad data shown in
this example were created at the satellite overpass times. The differences in the spatial resolution of these
datasets is clear, given that the CALIOP data is obtained at a spatial resolution of 335–1000 m × 30–60
m (∆x × ∆z) and the CPR data is obtained at a spatial resolution of 1.1 km × 240 m (∆x × ∆z). The
combined sampling of all three systems, however, demonstrates that the GridRad data: i) provide ZH echo
top altitudes that are consistent with the CloudSat CPR (see also Fig. 7), and ii) help to fill in the depth of
the cloud that is not well sampled by CALIOP and CPR, given that both satellite-based sensors suffer from
attenuation in volumes with large precipitation-sized particles.
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Figure 6: For a CONUS overpass by the A-Train on 8 June 2015 from 0808 to 0810 UTC: (a) CALIOP 532
nm total attenuated backscatter, (b) CloudSat CPR radar reflectivity, (c) GridRad radar reflectivity ZH, and
(d) an overlay of all three datasets.

4.2 Limitations

In addition to the limitations of spatial resolution and frequency of the available GridRad data, one of the
most important limitations users should consider is the minimum detectable ZH. NEXRAD WSR-88D
radars are capable of sensing ZH well below the scale of dense precipitable hydrometeors, especially at
close ranges from the radar. The minimum detectable signal of the radar is −42 dBZ at 1 km and increases
with increasing range to about 11 dBZ at the maximum detectable range of 460 km (Crum and Alberty,
1993). For the observations merged in the GridRad procedure (i.e., those within 300 km of each radar), the
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minimum detectable ZH ≤ 7.5 dBZ. Thus, data merged into the GridRad domain can span a wide range of
ZH, especially considering that the maximum observed ZH in storms over the CONUS is about 80 dBZ.
Nevertheless, the vast majority of ZH in GridRad is ≥5 dBZ.

Apart from the obvious limitations related to resolution, sampling, Level 2 data availability, and the
temporal availability of the public GridRad datasets outlined above, there are sources of error in the native
NEXRAD WSR-88D Level 2 observations that propagate into the GridRad data (i.e., artifacts that are not
removed during the 4-step GridRad procedure) which users should expect to encounter. Short descriptions
of such error are provided below, with discussion limited to the most common errors. Many of these errors
can be largely mitigated through use of the available quality control routines discussed in §5 below.

One of the most common sources of error in radar observations is non-standard beam refraction (com-
monly referred to as ‘anomalous propagation’ or AP). As outlined in §3 above, the altitude of each beam
in a radar volume used for binning in the GridRad procedure is calculated assuming a standard index of re-
fraction for the atmosphere. Under dry, near-adiabatic conditions in the lower atmosphere, radar beams can
refract less than expected and result in an underestimation of the true beam altitude for binning. Conversely,
over-estimation of the radar beam altitude is possible if the beam refracts more than expected, which is com-
mon if there are significant temperature inversions in the tropospheric boundary layer. These errors from
non-standard refraction, however, are typically limited to beams that travel long distances in the boundary
layer (e.g., Doviak and Zrnić, 1993). A correction for this source of error does not exist in the provided
GridRad quality control routines.

Contamination of the radar measurement from beam side lobes is also a common source of error in radar
observations, but is relatively rare at ZH observed within the GridRad data. In general, side lobe contam-
ination is only possible from the first lobe, which is 27 dBZ below the main lobe power for a NEXRAD
WSR-88D radar and 1.2 degrees away from the beam center (up to 6 km in altitude for ranges within 300
km). In order for side lobe contamination to be present, the ZH of the scatterer in the path of the side lobe
must be stronger than the signal in the path of the main lobe by at least the two-way, first-side lobe isolation
(i.e., ≥54 dBZ, OFCM, 2005). At the typical 5 dBZ minimum of ZH in GridRad data, side lobe contami-
nation of a given beam requires that ZH within 1.2 degrees of the beam center exceed 59 dBZ. A correction
for this source of error is possible using the provided GridRad quality control routines.

The sun emits radiation at all wavelengths. During sunrise and sunset, NEXRAD WSR-88D radars may
receive such radiation within beams coincident with the sun’s inclination, leading to ZH typically less than
20 dBZ that is confined to a few azimuthal samples at a single elevation. Such radar signals are commonly
referred to as ‘sun strobes’ and are observed when clouds are not present along the line of sight to the sun.
This error is almost entirely mitigated using the provided GridRad quality control routines. Note that sun
strobes are somewhat analogous to interference detected from microwave transmitters near the WSR-88D
radars, which can be a more persistent source of error, but is also well-mitigated using the provided GridRad
quality control routines.

Some common error sources only impact the polarimetric variables ZDR, φDP, and ρHV. In many cases,
these errors can be uniquely informative of the observed storm’s microphysics and often occur downrange
of convection. Such error sources include differential attenuation, depolarization, and non-uniform beam
filling (NBF). Examples of these and less common error sources can be found in Kumjian (2013). Unless
ρHV is reduced well below 1.0, many of these error sources are not removed using the available quality
control routines. Differential attenuation of the H and V beams is only common in broad areas of heavy
precipitation in NEXRAD WSR-88D observations (e.g., Ryzhkov et al., 2013; Kumjian, 2013). In the event
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that differential attenuation does occur, it is manifested as negatively biased ZDR downrange of the attenu-
ating scatterers (often the responsible medium is large hail).

Depolarization can cause radially oriented streaks of positive or negative ZDR when ice crystals are
oriented at a nonzero angle relative to the H and V polarization plane axes (e.g., Ryzhkov and Zrnić, 2007).
These depolarization streaks are most evident downrange of the depolarizing medium and are common in
anvil regions of deep convection and in some wintertime storms.

NBF can cause negative ZDR biases for very large cross-beam gradients of measured ZH and ZDR at
distant ranges, but only if the cross-beam gradients are of opposite sign (Ryzhkov, 2007). These biases begin
at the region of NBF and extend downrange. If both ZH and ZDR are decreasing with increasing elevation,
the NBF-induced ZDR bias would be positive. If there is no existing ZDR gradient in the first place, there
would be no NBF-induced bias in ZDR. While the space-time weighting in the GridRad procedure helps to
limit NBF in the output volumes, such errors may be present from time to time in the GridRad data.

18



5 Example Code and GridRad Data Usage

To enable easy access and use of the v4.2 GridRad data, we have provided sample read and quality control
routines written in the IDL (Interactive Data Language) and Python programming languages. Table 2 lists
these routines and their utility.

Procedure Name (language) Input Purpose
gridrad read file (IDL) Full path to location of Read contents of GridRad file.
gridrad.read file (Python) GridRad file.
gridrad filter (IDL) GridRad data structure Remove observations with low
gridrad.filter (Python) from gridrad read file. echo frequency or W .
gridrad remove clutter (IDL) GridRad data structure Remove echo that is objectively
gridrad.remove clutter (Python) from gridrad read file. flagged as non-meteorological.

Table 2: Name, input, and purpose of provided code to read and quality control the GridRad data. The IDL
code is provided as three separate procedures with file names that match the procedure names (with a ‘.pro’
file extension). The Python programs are provided as a single file (‘gridrad.py’).

To reduce file size, the GridRad data files use a combination of a sparse storage scheme and internal netCDF-
4 file compression. Data values for V and W are stored in one-dimensional arrays only for those GridRad
grid volumes that contain echo. A one-dimensional zero-based index array of the same size is provided to
scatter the data values into the full three-dimensional GridRad arrays. The index array assumes that the lon-
gitude subscript of the GridRad array varies fastest, followed by the latitude subscript, and then the altitude
subscript. The echo count (Necho) and observation count (Nobs) are stored as full three-dimensional arrays.
The provided IDL and Python file reading programs return the full, three-dimensional arrays of GridRad
data to the user and can be used as additional reference for the above-outlined procedure. Filtering and
decluttering methods are discussed in the following section.

5.1 Recommendations

The GridRad data provided in the public archives contain the raw outputs of the 4-step GridRad procedure.
The data are built using every available successful NEXRAD WSR-88D Level 2 observation, including
those with possible artifacts or non-meteorological scatter. Thus, for users who aim to study and/or evaluate
high-quality meteorological echo, it is recommended that two quality control techniques be applied to the
data prior to analysis. First, many low-quality observations and scanning artifacts can be removed by eval-
uating the frequency at which echo is present within all available NEXRAD observations (referred to here
as ‘filtering’). This is the central idea behind the gridrad filter programs, which identify GridRad
volumes with low W (< 1.5) or low echo frequency (Necho/Nobs < 0.6, if Nobs ≥ 3) and removes the
binned radar variables (sets them equal to a not-a-number). The goal of this filtering approach is to retain
echo that has either been observed consistently from multiple Level 2 scans or was made in close proximity
to a contributing radar and close in time to that of the GridRad analysis. To demonstrate the benefit of fil-
tering, we provide an example analysis comparing ZH = 5 dBZ echo top altitudes computed using GridRad
data and higher-resolution CloudSat CPR data in Figure 7. No attempt was made to account for differences
resulting from the mismatched W- and S-band frequencies of the CPR and NEXRAD radars in this analy-
sis, but that difference is expected to be small at a reflectivity threshold of 5 dBZ. This comparison shows
that 5-dBZ echo top altitudes based on the raw GridRad data are biased nearly 1 km high, those based on
the recommended Necho/Nobs filtering threshold of 0.6 are nearly unbiased, and those based on the highest
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Figure 7: Frequency distributions of ZH = 5 dBZ echo top altitude differences between those diagnosed
using GridRad data and those from higher-resolution CloudSat Cloud Profiling Radar (CPR) observations.
Distributions are shown for echo frequency thresholds Necho/Nobs of 0.0 (black), 0.6 (dark gray), and 1.0
(light gray). This comparison is based on 237,557 observed ZH profiles between 2006 and 2016.

possible threshold of 1.0 (or 100%) are biased nearly 1 km low. Thus, we recommend that GridRad data
used for meteorological studies be filtered.

The gridrad remove clutter programs are designed to remove non-meteorological echo from
biological scatterers and artifacts such as noisy returns or ‘speckles.’ The approaches employed are largely
modeled after the ideas outlined in Zhang et al. (2004) for native NEXRAD WSR-88D Level 2 volumes.
First, GridRad volumes containing echo are checked for additional echo in immediately adjacent volumes
at the same altitude. If the total echo coverage in the neighboring grid volumes (and the volume in ques-
tion) is less than 32%, the reflectivity is changed to a missing value. Second, GridRad columns with weak
echo that is contained entirely within the lowest altitude levels are removed. This second step will re-
move some meteorological echo in shallow precipitation (mostly winter storms) and thus is optional in the
gridrad remove clutter routine. Third, non-meteorological echo below the anvils of deep convec-
tion is removed. This step requires a layer of echo-free GridRad volumes between the anvil in the upper
troposphere and (mostly biological) scatter in the tropospheric boundary layer. Last, a second check for
sufficient echo coverage is applied that is equivalent to the first step. It is recommended that the full 4-step
clutter removal process be used for analysis of deep cloud systems and that shallow echo removal (the op-
tional Step 2) not be used for shallow cloud systems.

For GridRad volumes that contain the polarimetric variables, a ρHV-based step of clutter removal is
added before the general 4-step procedure outlined above. Namely, echoes are discarded if ZH < 40 dBZ
and ρHV < 0.9 or, if at altitudes at or above 10 km AMSL, ZH < 25 dBZ and ρHV < 0.95. This approach
leverages one of the key strengths of ρHV observations: distinguishing between meteorological and non-
meteorological echo.

Figure 8 shows column-maximum ZH from an example polarimetric GridRad analysis with all possible
combinations of quality control applied. This analysis time has convection over the Great Plains and Rocky
Mountains and multiple precipitation regimes along the east coast of the United States. In the raw data,
biological scatterers are present over the entire U.S., evidenced by circular low-ZH (<15 dBZ) features at

20



GridRad Column−Maximum Maps valid 2018−07−28 00:00 UTC

Full Clutter Removal

Raw Data Filtered Data

Filtering and Full Clutter Removal

Clutter Removal - No Step 2 Filtering and Clutter Removal - No Step 2

24.0°

30.5°

37.0°

43.5°

50.0°

La
tit

ud
e

24.0°

30.5°

37.0°

43.5°

50.0°

La
tit

ud
e

235.0° 249.8° 264.5° 279.2° 294.0°
24.0°

30.5°

37.0°

43.5°

50.0°

Longitude

La
tit

ud
e

235.0° 249.8° 264.5° 279.2° 294.0°

Longitude

0 15 30 45 60 75
ZH (dBZ)

  

Figure 8: Maps of GridRad column-maximumZH with and without all possible combinations of the provided
quality control techniques. The GridRad analysis is valid 28 July 2018 at 00:00 UTC.

near ranges to the contributing radar locations. These non-meteorological echoes are effectively removed
through application of one or more of the possible combinations of quality control techniques.

5.2 GridRad Examples of Common Radar Analyses

The GridRad data enable novel analyses of observed clouds and precipitation over the CONUS. Past uses
of GridRad data include evaluating and testing convective parameterizations in global climate models (e.g.,
Jeyaratnam et al., 2020; Wang et al., 2021), training machine learning models to predict storm-related haz-
ards (e.g., Lagerquist et al., 2020; Mecikalski et al., 2021), evaluating resolved convection simulated by
non-hydrostatic models (e.g., Thielen and Gallus Jr., 2019; Zhang et al., 2019; Coleman and Ancell, 2020;
Lin et al., 2021; Phoenix and Homeyer, 2021), validating satellite methods that are used in regions without a
dense radar network (e.g., Apke et al., 2018; Wang et al., 2019; Cooney et al., 2021), and event-based and/or
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climatological studies of precipitating systems in the extratropics to advance our understanding of a range
of meteorological, climatological, and hydrological processes (e.g., Cooney et al., 2018; Feng et al., 2019;
Murillo and Homeyer, 2019; Sandmæl et al., 2019; Starzec et al., 2020; Homeyer et al., 2020; Jeong et al.,
2020; Schumacher and Rasmussen, 2020; Homeyer et al., 2021; Homeyer and Bowman, 2021; Murillo et al.,
2021; Tinney and Homeyer, 2021). To provide users with some insight into these possibilities, an example
interrogation of an event using GridRad-Severe data is presented here. All of the example figures were pro-
duced using the GridRad Viewer software developed by C. Homeyer in IDL and made available online at
GridRad.org. The full recommendations for quality control were applied to the GridRad data used in these
examples.

Figure 9 shows maps of column-maximum ZH at 4-hour intervals from the GridRad-Severe data for the
20 May 2013 event, widely known due to the catastrophic EF-5 tornado that passed through the town of
Moore, Oklahoma between 19:56 and 20:33 UTC. Maps encompassing the entire event domain are given
from the time of the severe supercell storms in Oklahoma during the Moore tornado (20 UTC; Fig. 9a)
through the overnight hours as the storms in Oklahoma and nearby states increased and grew upscale into
a large, multi-state mesoscale convective system that began to dissipate the following morning (00-08 UTC
on 21 May 2013; Figs. 9b-d).

Figure 10 shows ZH and derived products for a subdomain of the 20:00 UTC analysis on 20 May 2013
focused on at least three supercell storms in far North Texas and central Oklahoma. Figures 10a and 10b
show column-maximum ZH and ZH at a constant altitude of 2 km AMSL, respectively, revealing areas of
precipitation and related echo aloft (non-precipitating cloud, most being anvil produced by deep convec-
tion). The three supercell storms are highlighted further by the attempts to estimate maximum potential
hail size and dominant hydrometeor type in Figures 10c and 10d. Namely, Figure 10c shows the ZH-based
Maximum Expected Size of Hail fit to the 95th percentile diameter of hail reports (MESH95), recently de-
fined in Murillo and Homeyer (2019). MESH95 (and related variants) is based on the vertical integral of ZH

above the height of the 0◦C isotherm (set to a constant altitude of 4 km AMSL in this case, based on nearby
balloon observations) and, for otherwise supportive dynamic and thermodynamic environments, is skillful
in capturing the maximum hail produced by a severe storm (e.g., Murillo and Homeyer, 2019; Murillo et al.,
2021; Wendt and Jirak, 2021). The three supercells highlighted in this map were responsible for multiple se-
vere hail reports ranging from 1 to 2.5 in. (25-65 mm) in diameter, consistent with the magnitudes estimated
by MESH95. The polarimetric hydrometeor classification in Figure 10d (at an altitude of 2 km AMSL) is
based on the operational NEXRAD WSR-88D algorithm (Park et al., 2009), slightly revised and applied as
outlined in Handler and Homeyer (2018). The hydrometeor classification algorithm uses ZH, ZDR, KDP,
and ρHV to determine the most likely hydrometeor type. Convection-stratiform echo classifications and the
height of the 0◦C isotherm are also used in the algorithm, for which echo classifications are determined
by the Storm Labeling in 3 Dimensions algorithm (SL3D; Starzec et al., 2017), which was developed us-
ing GridRad data. The three supercells show broad areas classified as heavy rain at 2 km AMSL, with the
Moore, Oklahoma tornadic supercell storm (that bisected by the A–B line in Fig. 10a) showing areas of large
ice (graupel and hail) as well, indicating the most likely location of hail reaching the ground at this time.
Such analysis techniques (i.e., the hydrometeor classification) demonstrate the unique information given by
polarimetric observations to improve hazard identification in severe storms.

While the spatial information provided by maps is useful to assessing the overall impact of an event,
many studies of radar observations investigate the vertical structure of storms to better understand the com-
plex processes leading to hazards at the ground and to what altitudes storm impacts on atmospheric compo-
sition and aviation (i.e., turbulence) are possible. Figure 11 shows vertical cross-sections of ZH, azimuthal
shear, ZDR, KDP, ρHV, and the hydrometeor classification taken along the path labeled ‘A–B’ in Fig. 10a
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Figure 9: For the GridRad Severe 20 May 2013 event: maps of column-maximum ZH valid (a) 20 UTC on
20 May 2013, (b) 00 UTC on 21 May 2013, (c) 04 UTC on 21 May 2013, and (d) 08 UTC on 21 May 2013.
The thick black box in (a) encompasses the smaller analysis domain used in Fig. 10.

and bisecting the Moore, Oklahoma tornadic supercell storm. Several features common to deep convec-
tion and supercell storms can be identified in these cross-sections, including updraft signatures such as the
bounded weak echo region in ZH (BWER; e.g., Browning and Donaldson Jr., 1963; Musil et al., 1986;
Calhoun et al., 2013) and columns of large positive values in ZDR and KDP (e.g., Kumjian et al., 2014;
Homeyer and Kumjian, 2015) on the left of the cross-section, the vertical structure of the tornadic mesocy-
clone (cyclonically rotating updraft) in azimuthal shear (also on the left of the cross-section), and the graupel
and hail dominance within the supercell given by the combined analysis of the polarimetric variables via
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Figure 10: For the 20 May 2013 at 20 UTC GridRad-Severe analysis, maps of (a) column-maximum ZH,
(b) ZH at an altitude of 2 km, (c) MESH95, and (d) polarimetric hydrometeor classification. For (d), the
hydrometeor classes are: dry aggregated snow (DS), wet snow (WS), ice crystals of various orientations
(CR), “big drops” (BD), light and moderate rain (RA), heavy rain (HR), graupel (GR), and hail (HA). The
thick black line labeled ‘A–B’ in (a) represents the path of the vertical cross-sections provided in Fig. 11.

the hydrometeor classification. Reduced coverage of the kinematic fields, which is common relative to the
microphysical quantities in GridRad data, is evidenced by the large data void in the azimuthal shear cross-
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section here. Though this example provides only a single snapshot of vertical structure, the GridRad data
allow for extensive 3-D analysis of storms, as demonstrated in several prior studies cited herein.
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Figure 11: Vertical cross-sections of (a) ZH, (b) ZDR, (c) KDP, (d) ρHV, and (e) polarimetric hydrometeor
classification along the line labeled ‘A–B’ in Fig. 10a. Hydrometeor classes in (d) are as those shown in
Fig. 10.
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6 Table of Symbols

Symbol Units and/or numerical value Quantity

ZH dBZ radar reflectivity at horizontal polarization
VR m s−1 radial velocity from Doppler shift
σV m s−1 velocity spectrum width
ZDR dB differential radar reflectivity
φDP

◦ differential propagation phase shift
KDP

◦ km−1 specific differential phase
ρHV dimensionless co-polar correlation coefficient
L 150 km spatial weighting scale
τ 150 s temporal weighting scale
r km radial distance from the radar
∆t s time difference between observation and analysis
x, xi

◦E longitude
y, yj

◦N latitude
z, zk km altitude with respect to the geoid
wi dimensionless weight for a single radar observation
W dimensionless total weight
vi single observation of a radar variable
V weighted average of a radar variable
Nobs dimensionless number of observations in GridRad volume
Necho dimensionless number of observations with echo in GridRad volume
∆x km horizontal resolution
∆z km altitude resolution
∆r km radial resolution of Level 2 observation
` km radar beam width or depth
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