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ABSTRACT

This study presents a new storm classification method for objectively stratifying three-dimensional radar
echo into five categories: convection, convective updraft, precipitating stratiform, nonprecipitating stratiform,
and ice-only anvil. The Storm Labeling in Three Dimensions (SL3D) algorithm utilizes volumetric radar data
to classify radar echo based on storm height, depth, and intensity in order to provide a newmethod for updraft
classification and improve upon the limitations of traditional storm classification algorithms. Convective
updrafts are identified by searching for three known polarimetric radar signatures: weak-echo regions
(bounded and unbounded) in the radar reflectivity factor at horizontal polarization (ZH), differential radar
reflectivity (ZDR) columns, and specific differential phase (KDP) columns. Additionally, leveraging the three-
dimensional information allows SL3D to improve uponmissed identifications of weak convection and intense
stratiform rain in traditional two-dimensional classification schemes. This study presents the results of ap-
plying the SL3D algorithm to several cases of high-resolution three-dimensional composites of NEXRAD
WSR-88D data in the contiguous United States. Comparisons with a traditional algorithm that uses
two-dimensional maps of ZH are also shown to illustrate the differences of the SL3D algorithm.

1. Introduction

Regions of convective and stratiform precipitation are
known to differ considerably in terms of 1) microphys-
ical composition and associated precipitation rates (e.g.,
Houghton 1968); 2) thermodynamic properties including
diabatic heating rates, perturbations to the altitude of the
environmental melting (or freezing) level, and related
storm divergence profiles (e.g., Johnson 1984; Houze
1989; Mapes and Houze 1993); and 3) their relative fre-
quency of occurrence across the globe (e.g., Schumacher
and Houze 2003). Recognition of these differences has
motivated several previous studies to develop methods
that objectively identify convective and stratiform pre-
cipitation in radar and satellite observations in order to

enable improvements in our understanding of their dif-
ferences and associated physical and dynamical processes
(e.g., Adler and Negri 1988; Williams and Ecklund 1995;
Steiner et al. 1995; DeMott et al. 1995; Anagnostou and
Kummerow 1997; Hong et al. 1999; Anagnostou 2004;
Bringi et al. 2009; Yang et al. 2013).
One of the most well-known and utilized schemes for

convective-stratiform classification using ground-based
radar observations is the Steiner et al. (1995) method,
hereafter referred to as SHY. SHY employs a three-step
procedure to distinguish between convective and strat-
iform precipitation using observations at the lowest el-
evation in a radar volume. First, any value of the radar
reflectivity factor at horizontal polarization (ZH) that
exceeds a specified threshold is considered convective.
Second, an additional exceedance threshold is used to
identify previously unclassified convective elements if
the ZH at a grid point surpasses the mean background
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ZH over a set radius [similar to that of Adler and Negri
(1988)]. Third, a convective radius of influence is applied
to all identified locations of convection from steps 1 and
2 to broaden the horizontal extent of the convective clas-
sification to regions of similarly intense precipitation. In
other words, depending on the magnitude of ZH relative
to the mean background value, all points within a certain
radius are labeled as convective.
Many studies have built upon the SHY procedure by

incorporating vertical information in the classification to
improve its performance, particularly in cases where
convection is weak, stratiform precipitation is intense,
or convective regions are strongly tilted in the vertical
(thereby inadvertently decoupling convective precipita-
tion at low altitudes from its source aloft). Biggerstaff and
Listemaa (2000) added a step to compute the vertical
lapse rate of ZH in the 3-km layer above the ZH column-
maximum value to improve the skill of the convective
classification in the SHY method, and a ‘‘brightband’’
(ZH maximum occurring near the melting level in strati-
form precipitation) detection method to improve the
stratiform classification.More recently, Powell et al. (2016)
incorporated a range-dependent SHY-based classification
to low elevations of single-radar observations in their na-
tive polar coordinates to better identify shallow convection
and improve precipitation estimation. Feng et al. (2011)
focused on the top-of-the-atmosphere radiation budget of
convective systems and added a convectively generated
anvil [i.e., an anvil resulting from direct detrainment from
the convective updraft; e.g.,Mullendore et al. (2009)] cloud
classification to the SHY scheme. Feng et al. (2011) used
five constant-altitude levels from three-dimensional com-
posites of multiple ground-based radars to distinguish be-
tween convective, stratiform, and anvil clouds.
While the aforementioned studies incorporated ver-

tical storm information in the SHY procedure, the pri-
mary classification between convective and stratiform
precipitation in SHY-based algorithms and similar ap-
proaches is completed using a single low-altitude map
of ZH. For research purposes such as quantitative pre-
cipitation estimation, SHY-based methods applied to
single-radar observations can be adequate. However, the
reliance of SHY-based methods on low-altitude obser-
vations alone (typically at a level of 2–3km) limits their
utility for other research topics that require knowledge on
the vertical structure of convection. For example, in-
formation on the extent and depth of convection is a
necessary element of analysis for studies on convective
mass transport, cloud microphysics, diabatic heating, and
gravity wave generation (e.g., Kuo and Anthes 1984;
Nuret and Chong 1998; Alexander 2004; Schumacher
et al. 2004; Mullendore et al. 2005; Barth et al. 2007; Park
et al. 2009; Homeyer et al. 2014; Srinivasan et al. 2014). In

addition, the use of stringent low-altitude ZH thresholds
may misclassify weak and/or shallow convection as strati-
form rain or intense stratiform rain as convection, sub-
sequently introducing biases in the analysis of precipitating
systems. Methods that leverage the three-dimensional
information widely available in ground- and satellite-based
radarobservationsare required toovercome these limitations.
In this study, we introduce a method for classifying

radar echo using three-dimensional high-resolution com-
posites of radar observations from the Next Generation
WeatherRadar (NEXRAD)Weather SurveillanceRadar-
1988 Doppler (WSR-88D) network (Crum and Alberty
1993). We call this method the Storm Labeling in Three
Dimensions (SL3D) algorithm. The SL3D algorithm uses
the vertical depth and echo-top altitude of ZH, additional
dual-polarization (or polarimetric) radar quantities, and
the altitude of the environmental melting level to stratify
radar echo into five categories (described in section 3 be-
low). We use several cases of varying organization, com-
plexity, and regionality to demonstrate the performance of
the SL3D algorithm and compare it to the traditional SHY
approach. The primary goal of SL3D is to enable new
analyses on topics that require information on vertical
storm structure by producing a regionally unspecific clas-
sification of precipitating systems using three-dimensional
radar observations.

2. Radar data

The radar data used in this study are three-dimensional
composites of NEXRADWSR-88D observations, where
the volume data from individual radars are provided by
the National Centers for Environmental Information
(NCEI; National Weather Service 1991). Radar com-
posites are created following the methods outlined in
Homeyer (2014) and updated in Homeyer and Kumjian
(2015). In short, observations from each radar are binned
in space and time at 5-min intervals in a volumewith 0.028
(;2km) latitude–longitude grid spacing and 1-km grid
spacing in the vertical. For binning, observations are
weighted out to 300km in range and within 5min of the
composite time using a Gaussian function. Grid volumes
with large cumulative bin weights (i.e., the sum weight of
all observations contributing to a grid volume) and a high
fraction of echo detection in contributing radar scans are
retained for analysis. The largest weights are given to
observations closest to a radar location and closest in time
to that of the composite. The time-binning component is
the only difference from the procedure outlined in
Homeyer and Kumjian (2015); hence, no interpolation is
performed on the individual radar scans in time or space.
Each composite contains up to four polarimetric vari-
ables for analysis: ZH, the differential radar reflectivity
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ZDR, the specific differential phase KDP, and a copolar
correlation coefficient rHV. Composites during the years
2013–present contain all four variables since the upgrade
of theNEXRADWSR-88Dnetwork to dual-polarization
was completed in early 2013, while composites for cases
prior to 2013 contain only ZH.
The polarimetric variables from NEXRAD radars

provide information on the size, shape and/or orienta-
tion, concentration, and phase of precipitable hydro-
meteors. For example, ZH and ZDR convey information
about the size and shape of the largest hydrometeors in a
sample volume, respectively, while KDP is indicative of
the presence of nonspherical hydrometeors in the beam
volume. If particles are small compared to the wave-
length of the radar, positive values of ZDR and KDP in-
dicate scatterers with horizontal-to-vertical axis ratios
greater than 1, such as raindrops, while negative values
represent scatterers with horizontal-to-vertical axis ra-
tios of less than 1. Alternatively, rHV enables discrimi-
nation between meteorological and nonmeteorological
echoes and detection of volumes with mixed-phase
(water and ice) precipitation. Meteorological scat-
terers have rHV near 1 for volumes with uniform particle
phases. In mixed-phase regions, rHV reduces to values as
low as 0.8 and can be even lower in the presence of large
hail. Nonmeteorological scatterers typically have rHV

values below 0.5. While rHV is not used in the SL3D
classification, echowith rHV values below the 0.5 threshold
are removed from the polarimetric radar composites prior
to analysis in this study. More information on the physical
meaning of each polarimetric radar variable is available
in textbooks (e.g., Doviak and Zrnić 1993; Bringi and
Chandrasekar 2001) and review papers (e.g., Herzegh and
Jameson 1992; Zrnić andRyzhkov 1999; Straka et al. 2000;
Ryzhkov et al. 2005b; Kumjian 2013a,b,c).
The ZH field may contain considerable bias as a result

of beambroadening, partial or complete beam shielding,
attenuation by atmosphere and hydrometeors, and
sidelobe contamination. The ZH observations may also
contain artifacts such as ground clutter, second-trip
echoes, and three-body scatter spikes. The dual-
polarization variables (ZDR, KDP, and rHV) are subject
to substantial biases and artifacts, some of which are
unique compared to traditional single-polarization var-
iables such as ZH. Often, rHV is the least impacted by
biases and/or artifacts, with many nontypical values in
precipitation being microphysically informative. For
example, a reduction in rHV near the melting level in
stratiform rain regions is present because of the co-
existence of liquid and frozen hydrometeors in the radar
volume. We find thatKDP suffers from a large amount of
random noise but is not affected by calibration errors and
systematic biases. Meanwhile, ZDR is largely sensitive to

calibration errors and is often systematically biased
up to 60.5 dB in observations from WSR-88Ds (e.g.,
Cunningham et al. 2013; Homeyer and Kumjian 2015).
As a result, we correct for systematic ZDR biases in in-
dividual radar scans prior to their inclusion in the
composites using a ‘‘natural scatterer’’ approach (e.g.,
Ryzhkov et al. 2005a). We do not correct for well-known
artifacts such as nonuniform beam filling, differential at-
tenuation, or depolarization of the radar beam, as these
are both difficult to detect objectively and are often in-
significant relative to the scale of the radar composites
[see Homeyer and Kumjian (2015) for additional detail
and justification].

3. SL3D algorithm

The storm classification algorithm used in this study
(SL3D) stratifies radar echo into five categories: con-
vection, convective updraft, precipitating stratiform,
nonprecipitating stratiform, and ice-only anvil. In sum-
mary, the objective of the SL3D convective classification
is to identify precipitation that is directly generated by
convective motions (i.e., strong vertical motion or ‘‘up-
drafts’’). Precipitating (nonprecipitating) stratiform en-
compasses any mixed-phase cloud that does not contain
convective updrafts and is (is not) precipitating. Anvil is
considered to be ice-only cloud resulting from upper-
tropospheric detrainment of ice crystals by convection
or advected from a convectively generated stratiform
region. More detailed descriptions of the classification
categories are defined in their corresponding sections
below and a summary of the criteria applied to the radar
observations is presented in Table 1. It is important to
note that the convection classification occurs first and is
incrementally followed by the stratiform (precipitating
and nonprecipitating) and anvil classifications. Convec-
tive echo cannot be relabeled as stratiform or anvil.
Similarly, echo identified as stratiform cannot be relabeled
as anvil. Once the precipitating and nonprecipitating echo
regions are identified, echomay be identified as convective
updraft within 12km of any echo classified as convection
if one of several conditions are met; these conditions are
outlined below.
SL3D incorporates information from the atmospheric

environment. Namely, the altitude of the 08C level (i.e.,
the melting level) is used, which we obtain from radio-
sonde observations for the cases presented in this study.
While it is possible to couple melting-layer identification
algorithms to SL3D using the radar observations alone
(e.g., Giangrande et al. 2008), it is outside the scope of
this study to evaluate and determine the sensitivity to
each method. Since any objective classification is prone
to error, it is the authors’ preference to limit such error
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sources for the SL3D algorithm and specify the altitude
of the melting level.

a. Convection and stratiform

As outlined in the introduction, there are distinct
microphysical and thermodynamic differences between
convective and stratiform precipitation. Convective pre-
cipitation occurswhen strong, deepmesoscale uplift and/or
positive buoyancy leads to the development and growth of
cloud particles. As the droplets are lofted into the middle
troposphere, they freeze and grow rapidly by the collection
and glaciation of additional supercooled liquid water (e.g.,
Churchill and Houze 1984). These updrafts can loft pre-
cipitable particles into the upper troposphere and thereby
result in deep, vertically erect columns of high-ZH values
observed by radar. Updrafts can eject large amounts of
ice crystals in the upper troposphere, while large,
precipitation-sized particles fall out of the updraft and
reach the surface as precipitation. As the particles de-
scend, they melt, collide, and coalesce with other parti-
cles, which lead to even higher ZH near the surface.
Stratiform precipitation results from weak mesoscale

ascent at altitudes typically above the freezing level that
leads to the formation, growth, and fallout of ice crystals
to lower altitudes. Upper-level detrainment from deep
convection is often a common source of ice crystals in
stratiform regions. Ice crystals can also be actively gen-
erated in the stratiform region above the melting level
(e.g., Braun and Houze 1994). The falling ice crystals in a
stratiform system aggregate, which leads to moderate
rates of precipitation (relative to that in convection). If
the aggregates descend below the melting level, they are
often visible in radar observations as a shallow layer of
elevated ZH (i.e., the bright band) or reduced rHV im-
mediately below the melting-level altitude.
While the vertical structures of convective and strat-

iform systems are distinct, their column-maximum ZH

(i.e., composite reflectivity) and low-level ZH values can
be similar in magnitude. For example, ZH 5 40 dBZ at
3 km may just as easily be considered convective as
stratiform. Thus, in order to avoid the obvious limita-
tions of a ZH threshold-based convective-stratiform
classification at a single altitude, the SL3D algorithm
uses the depth of radar echo (i.e., continuous vertical
column ofZH), its maximumaltitude (i.e., echo top), and
its intensity relative to the surrounding echo to distin-
guish between convective and stratiform regions. The
SL3D convection classification utilizes height informa-
tion to identify deep convection by locating enhanced
regions ofZH that extend above themelting layer. These
vertical columns of enhancedZH are effectively used as a
diagnostic, or proxy, for convective motion. Only strong
vertical motions can loft large particles high enough to be
able to generate the associated continuous highZH in the
vertical dimension, while the enhanced ZH of stratiform
precipitation is confined to the melting level and below.
The SL3D convective classification is internally parti-

tioned into three steps to better identify convection of
varying extent and intensity. Radar echo in each grid
square that meets any of the following three criteria is la-
beled as convection: 1) ZH 5 25-dBZ echo top extending
above 10km, 2) horizontal layer ’’peakedness’’ that is the
maximum of either 4.0dBZ or 10:02Z2

H/337:5 dBZ, or
3) ZH $ 45dBZ at any altitude above the melting level.
Eachof these three criteria is discussed inmoredetail below.
Criterion 1 uses ZH 5 25dBZ, but ZH $ 30dBZ is

frequently used to define convection and/or the con-
vective extent (e.g., DeMott and Rutledge 1998). While
the SL3D convective classification is relatively in-
sensitive to the choice of ZH 5 30dBZ or ZH 5 25dBZ,
we use the slightly lower ZH 525 dBZ to better capture
weaker convection, where the ZH 5 30dBZ boundary
may be present just below 10 km. For criterion 2, the
horizontal peakedness of each grid point is evaluated to

TABLE 1. The criteria used for classification into the five SL3D categories, where ZH is horizontally polarized reflectivity, ZHmax is the
column-maximum ZH, and ZMelt is the height of the melting layer.

Classification Criteria

Convection ZH 5 25 dBZ echo-top altitude $10 km,
or ZH peakedness exceeding threshold in at least 50% of the echo
column between the surface and 9 km,

or ZH $ 45 dBZ above ZMelt

Precipitating stratiform ZH $ 20 dBZ at 3 km
or ZH $ 10 dBZ below 3 km

Nonprecipitating stratiform No echo or ZH , 20 dBZ at 3 km, and echo present below 5 km
Anvil No echo at or below 5-km altitude, but echo present above ZMelt

Updraft ZHmax $ 40 dBZ and ›ZH/›z$ 8 dBZ km21 with echo in at least six of
eight horizontally adjacent grid volumes,

or ZH $ 15 dBZ and ZDR $ 1.5 dBZ extending at least 1 km above ZMelt,
or ZH $ 30 dBZ and KDP $ 0.58 km21 extending at least 1 km above ZMelt
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better locate shallow and midlevel convection that may
be embedded within a deep or expansive stratiform
cloud. Building upon the SHY algorithm, peakedness is
considered to be the difference between the ZH of the
grid point being evaluated and the median ZH of a
12-km radius around the point. The peakedness of a grid
point is determined at each height where radar echo is
present in the lowest 9 km of the radar volume. A grid
point is labeled as convection if at least 50% of the
vertical column peakedness surpasses a threshold that
varies with ZH (i.e., 50% of the vertical radar echo
surpasses the peakedness threshold). This variable
threshold approach is equivalent to that outlined in
SHY, but we use a slightly altered relationship: the
higher of 4.0 dBZ or 10:02Z2

H/337:5 dBZ. This alter-
ation is based on both constant peakedness thresholds
used in studies prior to SHY (e.g., Churchill and Houze
1984) and our intended avoidance of an absolute re-
flectivity limit for convective/stratiform discrimination
when the variable peakedness threshold reaches zero.
Finally, in criterion 3, the 45-dBZ threshold is generally
considered to be indicative of the transition point from
graupel to small hail at S band and is only routinely
generated by riming in convective updrafts (e.g., Straka
et al. 2000). No ZH associated with the stratiform region
should approach this threshold above the melting level,
but it may approach or exceed 45dBZ below themelting
level via microphysical or dynamical processes.
Once convective regions are identified using the three

criteria outlined above, we apply two quality control
techniques that modify the classification. Any single
convective grid point that is adjacent only to non-
convective grid points is removed, as it is expected to be
false or inconclusive based on the classification criteria.
Once the single-point classifications are removed, any
grid points immediately adjacent to remaining convec-
tive echo are also classified as convective if their column-
maximumZH $ 25 dBZ. The reason for reclassifying the
adjacent grid squares and expanding the convective
classification is similar to that of the convective radius
step in SHY. Grid squares that are marginally below the
peakedness threshold but are on the periphery of iden-
tified convective regions are likely resultant from the
same convective processes.
Grid points that do not meet the convective criteria

undergo possible stratiform classification. The strati-
form classification in SL3D is split into two mutually
exclusive categories: 1) precipitating stratiform and
2) nonprecipitating stratiform. While vertical velocities
in stratiform regions are typically an order of magnitude
smaller than those in convection, considerable differ-
ences in vertical velocities between precipitating and non-
precipitating stratiform clouds have also been documented.

For instance, Schumacher et al. (2015) found that mean
vertical velocities in the tropics from the near surface to
10km ranged from 20.1 to 0.2 ms21 for stratiform and
from 0.1 to 0.9 ms21 for convection. The full spectra of
vertical velocity measurements varied from about 22 to
2 ms21 for stratiform and from 25 to 18 ms21 for con-
vection. For nonprecipitating cloud (their transitional
anvil), the mean vertical velocities were weaker than
stratiform and varied from 20.05 to 0.05 ms21, with
minima and maxima ranging from about 21.25 to
1.5 ms21 (Schumacher et al. 2015). The nonprecipitating
stratiform region encompasses the transition between
precipitating stratiform and ice-only anvil, where some
stratiform growth (i.e., aggregation) has occurred but
does not lead to precipitation. Ideally, regions categorized
as precipitating stratiform include only those observations
with nonconvective precipitation at the surface. However,
since radar coverage is limited near the surface, data at
3km are used to draw the primary distinction between
precipitating and nonprecipitating echoes. The 3-km height
is the lowest altitude with near-uniform coverage in the
NEXRAD WSR-88D network. When available, data be-
low 3km are used to identify additional regions of weak
precipitation.The 3-kmanalysis level is alsoused in theSHY
algorithm for comparisons with SL3D in section 5 below.
Precipitating stratiform is defined as that with

ZH $ 20 dBZ at 3 km or ZH , 20dBZ present at 3 km
when ZH $ 10dBZ is present at one or more of the
lower-altitude levels (1 or 2 km). These ZH thresholds
are similar to those used in other studies, such as Feng
et al. (2011) and Schumacher et al. (2015), which gen-
erally use ZH $ 10dBZ to identify stratiform pre-
cipitation at lower altitudes. The higher ZH 5 20dBZ
threshold at 3 km relative to the aforementioned studies
was determined by analyzing several dozen cases, and is
in place to ensure precipitation is reaching the surface.
On its own, ZH510 dBZ at 3 km is not a reliable in-
dicator of precipitation. Nonprecipitating stratiform
encompasses any echo that extends to altitudes at or
below the melting level, but does not meet the re-
quirements for precipitation outlined above.
As briefly outlined above, we specify themelting-level

altitude in SL3D to assist with echo classification. While
some unique radar features can be used to help identify
stratiform regions (e.g., ZH bright band or its commonly
used dual-polarization counterpart, a rHV reduction), we
do not employ such techniques in SL3D. These tech-
niques are not used because 1) not all stratiform regions
contain such signatures and some dual-polarization in-
dicators of stratiform rain can also be found in deep
convection (e.g., see Houze 1993, 1997; Steiner et al.
1995; Schumacher et al. 2015), 2) there is insufficient
vertical resolution in the radar dataset used in this study
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for resolving such features, and 3) these techniques
would include unnecessary limitations to the classifica-
tion based on the availability of dual-polarization vari-
ables, which are only present in theWSR-88D data since
late 2012. Fundamentally, the goal of the SL3D algo-
rithm is to be applicable regardless of radar polarization,
intrinsic vertical resolution, and region or large-scale
environment.

b. Anvil

In previous studies, anvil regions have commonly
been separated into modes thought to be representative
of unique physical and/or dynamic regimes. For exam-
ple, Frederick and Schumacher (2008) stratified anvil
into mixed-phase and ice-only cloud due to important
differences in radiative properties between the two
categories. The SL3D anvil classification is designed to
identify nonprecipitating ice-only cloud above the
melting level resulting from convective detrainment in
the upper troposphere (mixed-phase nonprecipitating
clouds are categorized as nonprecipitating stratiform).
To accomplish this, we identify regions as anvil if radar
echo (ZH $ 0dBZ) is only present above an altitude of
5 km, which is typically the maximum height of the
melting level and is similar to the approach of Feng et al.
(2011) and Carletta et al. (2016). Requiring the 5-km
threshold prevents potential misclassifications of echo in
environments where the melting-level altitude ap-
proaches the surface and the likelihood of the anvil
precipitating increases.

c. Convective updraft

Following the convection, stratiform, and anvil clas-
sification, radar echo is evaluated to determine whether
or not signatures indicative of strong convective up-
drafts are present. To identify convective updrafts, the
SL3D algorithm searches for three well-known radar
signatures: 1) weak-echo regions [WERs; bounded or
unbounded, e.g., Browning and Donaldson (1963);
Musil et al. (1986); Calhoun et al. (2013)], 2) ZDR col-
umns (e.g., Caylor and Illingworth 1987; Illingworth
1988; Bringi et al. 1991; Conway and Zrnić 1993;
Ryzhkov et al. 1994; Brandes et al. 1995; Loney et al.
2002; Scharfenberg et al. 2005; Kumjian and Ryzhkov
2008; Kumjian et al. 2014), and 3) KDP columns (e.g.,
Zrnić et al. 2001; Loney et al. 2002; Kumjian and
Ryzhkov 2008; Van Lier-Walqui et al. 2016). WERs are
elements of a convective storm with relatively low ZH

values at lower altitudes that are at least partially
bounded horizontally and above by relatively high ZH

values. SuchWERs have been shown to represent a lack
of large, precipitable hydrometeors due to strong (rapid)
ascent of developing particles in the updraft of a

convective storm. From a radar detectability perspec-
tive, the most easily identifiable WERs are bounded by
regions of high reflectivity. Bounded WERs are gener-
ally indicative of a strong updraft embedded within a
strongly sheared environment, and are commonly found in
supercell convection (e.g., Markowski 2002). The SL3D
algorithm identifiesWERs in the altitude layer below 7km
where 1) the vertical ZH gradient$8 dBZ km21 in a grid
volume, 2) echo is present in at least six of the eight
horizontally adjacent grid volumes, and 3) column-
maximum ZH $ 40dBZ. Although some storms con-
tainWERs extending to altitudes above 7km, the altitude
limitation and neighborhood check are necessary to limit
overidentification of updraft regions in vertically tilted
convection.
For radar composites that include the full suite of po-

larimetric variables, updraft classifications also include
ZDR and KDP columns. The ZDR and KDP columns are
regions of enhanced positive values (generally $1dB
and $0.5dBkm21, respectively) extending to altitudes
above the environmental freezing level. The columns
represent deep lofting of liquid hydrometeors within a
convective updraft. Since ZDR is a size-weighted measure
of particle shape, the ZDR columns identify updrafts ca-
pable of lofting large raindrops above the freezing level
(which may also include small hail). TheKDP columns, on
the other hand, indicate updrafts that have lofted large
concentrations of moderately sized (2–4mm) raindrops
above the freezing level (e.g., Loney et al. 2002). Van Lier-
Walqui et al. (2016) found thatKDP columns are not only a
good indicator of the presence of anupdraft, but changes in
the volume of a KDP column are correlated to changes in
the updraft mass flux.
Snyder et al. (2015) have recently developed an al-

gorithm for objectively identifying ZDR columns in
single-radar observations. In short, their algorithm
identifies a column of ZDR $ 1 dB at altitudes above
the freezing level, which is consistent with the ap-
proach we have designed independently here using a
slightly higher ZDR threshold. In the SL3D algorithm,
the ZDR and KDP columns are identified as those with
ZDR$ 1.5 dB or KDP $ 0.58km21 extending at least
1 km above the freezing level. The slightly higher
threshold of ZDR used here compared to Snyder et al.
(2015) accounts for calibration issues and potential
broadening of polarimetric signatures when data are
composited frommultiple radars. TheKDP threshold is
set to discriminate between high concentrations of
raindrops above the melting level and snow (which
typically occupies a KDP range from20.58 to 0.58 km21).
In addition, only echo with ZH $ 15 dBZ is consid-
ered for ZDR column detection, and echo with ZH $
30 dBZ for KDP column detection in order to avoid
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common biases (noise) along the periphery of radar
echoes.
SL3D updrafts are identified by locatingZDR andKDP

columns in grid volumes that lie within 12 km of any
previously identified convective grid point. The 12-km
radius was chosen to enable identification of updrafts
that may be displaced relative to the intense pre-
cipitation column, especially in vertically tilted storms.
Based on the authors’ experience, this distance is also a
common scale of horizontal separation between con-
vective cells in organized convective systems. Therefore,
this radius is viewed as an upper limit for neighborhood
searching, since expanding the radius to larger values
may commonly enable false identifications in non-
convective rain regions.
Finally, following identification of WERs, ZDR col-

umns, andKDP columns, we apply a single quality-control
step. Similar to the approach for convective classification,
any grid point identified as a convective updraft that is
horizontally surrounded by nonconvective updraft ech-
oes (i.e., single-point classifications) is removed and the
prior classification restored.

4. Example SL3D classifications and convective
updraft validation

To demonstrate the application of the SL3D classi-
fication, we show a simple dual-polarization case in
Fig. 1 that contains a large supercell storm in north
Texas at 0055 UTC 18 May 2013. The melting level for
this case is;4.75 km. Figure 1a shows a 3-km constant-
altitude map of ZH. The supercell reaches a maximum
of ZH near 60 dBZ and contains a well-defined hook
echo at 3 km in the southwest quadrant of the storm.
An extensive anvil region is visible through contrasting
regions of echo in the 3-km and column-maximum ZH

maps (Figs. 1a and 1b) and in the corresponding SL3D
classification (Fig. 1c). There are three smaller and
weaker convective storms to the north and northeast of
the supercell.

FIG. 1. Maps of (a)ZH at 3-km altitude, (b) column-maximumZH,
and (c) SL3D classification for a supercell located in northeast TX at
0055UTC18May 2013. The thick line labeledA–B in (a) and shown
in each map shows the location of the vertical cross sections in Fig. 2.

FIG. 2. Vertical cross sections of (a) ZH, (b) ZDR, and (c) KDP

following the thick line in Fig. 1, from A (left) to B (right). The
thick colored line at the base of each cross section shows the cor-
responding SL3D classification.
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The SL3D classification shows that the precipitating
portion of the supercell is largely identified as convec-
tion, with a broad convective updraft near the location
of the hook echo. To determine what physical charac-
teristics are contributing to the SL3D classification of
the supercell, we present a vertical cross section of the
polarimetric variables in Fig. 2 along a path that bisects
the storm’s hook echo and updraft region (the A–B line
in each map in Fig. 1). The vertical sections reveal that
both a deep (up to 8 km in altitude) bounded WER and
ZDR column contribute to the updraft classification,
while there is no significant KDP column signature. In
addition, the supercell reaches altitudes up to 18km
(consistent with its convective classification) and SL3D
convective regions correspond directly to vertically
erect volumes of high ZH. There is no apparent bright
band in the ZH section (Fig. 2a) and likewise little echo
classified as stratiform rain by SL3D. Both forward and
rear ice-only anvils are observed to be extending away
from the storm between ;9 and 15km and they are
captured well by SL3D.
While the example using WSR-88D observations in

Figs. 1 and 2 is encouraging, validation of the perfor-
mance of the echo-based updraft algorithm is desired to
establish confidence in its use. To achieve such validation,

we include examples of SL3D application to two multi-
Doppler radar cases, which provide measurements of the
three-dimensional wind fields within storms. The vertical
velocities were retrieved using variational integration of
the continuity equation (O’Brien 1970). Figure 3 presents
application of the SL3D algorithm to a supercell storm at
0030 UTC 30 June 2000 that was observed during the
Severe Thunderstorm Electrification and Precipitation
Study (STEPS; Lang and Rutledge 2002; Lang et al.
2004). Since this case includes only single-polarization
radar observations (i.e., ZH), updraft identification in
SL3D comes from the WER algorithm alone. The WER
identified in SL3D encompasses a large region of the
storm extending southeast from the hook echo located
along the southwestern flank of the storm at 3km
(Fig. 3a). In addition, theWER coincides with the highest
vertical velocities observed in the dual-Doppler wind
field (i.e., the updraft; see Fig. 3d). Despite the success of
the SL3D identification, there are a couple of points
worth noting: 1) while the main updraft region is identi-
fied, another region of enhanced vertical velocity to the
north is not identified by SL3D because of the absence
of aWER, and 2) theWER identified in SL3D extends to
regions in the southeastern portion of the storm that have
weak and/or marginal upward motion.

FIG. 3. Maps of (a) ZH at 3-km altitude, (b) column-maximum ZH, (c) the SL3D classification, and (d) dual-
Doppler-derivedmean vertical velocity in the vertical column froma stormobserved during STEPS at 0030UTC30
Jun 2000. The black lines denote the SL3D updraft classifications using WER identification alone.
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A second validation case is provided in Fig. 4. For this
case, dual-Doppler radar observations are taken from a
storm in northeast Colorado (Basarab et al. 2015;
Basarab 2015) observed at 2230UTC 6 June 2012 during
the Deep Convective Clouds and Chemistry (DC3) ex-
periment (Barth et al. 2015). In contrast to the STEPS
storm, this DC3 case includes dual-polarization obser-
vations that allow for validation of the entire three-step
updraft identification algorithm in SL3D. For this case,

the updraft identified in both SL3D and the Doppler
wind field is displaced to the south of the most intense
precipitation (Figs. 4a and 4f). Although the updraft
region is displaced, the updraft location in the dual-
Doppler wind field and SL3D classification are nearly
coincident. TheWER is once again visible by comparing
the 3-km and column-maximum ZH results (Figs. 4a
and 4b, respectively), where the SL3D-identified WER
is denoted by the black line. In this case, no significantKDP

FIG. 4. Maps of (a) ZH at 3-km altitude, (b) column-maximum ZH, (c) ZDR at 5-km altitude, (d) KDP at 5-km
altitude, (e) the SL3D classification, and (f) the maximum dual-Doppler-derived vertical velocity at 2230 UTC 6
Jun 2012. The black lines denote the SL3D updraft classifications using WER identification alone and the white
lines denote the SL3D updraft classifications using polarimetric variables alone.
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(Fig. 4d) columns are present, so the ZDR column de-
tection element of SL3D is the primary source of the dual-
polarization updraft classification step (white line), as
depicted by the regions of high ZDR at ;1km above the
melting level or a true altitude of 5km (Fig. 4b).

5. Comparisons of SL3D with traditional methods

As outlined in the introduction, traditional radar echo
classification methods like the SHY algorithm are
designed for precipitation estimation and use a single
low-altitude map of ZH to identify convection and
stratiform rain. The SL3D algorithm incorporates the
three-dimensional information of the radar observations
to build upon such classifications when information in
the vertical is needed. It is therefore important to eval-
uate the success of this three-dimensional approach and
its performance relative to the SHY method in order to
determine the impacts on the classification. We show
several comparisons of the SL3D and SHY classifica-
tions in this section for storms with varying organiza-
tional structures, large-scale forcings, and geographic
locations. To produce comparable classifications, the
SHY algorithm is applied to ZH fields at 3 km in each
case. Based on the analysis of Feng et al. (2011) using
multiradar composites, we use a ZH threshold of 43 dBZ

for the first SHY step, a background radius of 6 km for
the second step, and a convective radius of up to 3 km for
the final step. Echo below 10dBZ is considered to be too
weak for precipitation and is not included in the strati-
form classification.
Figures 5a–c show maps of column-maximum ZH, the

SL3D classification, and the SHY classification, re-
spectively, for a collection of deep quasi-linear convec-
tive storms primarily within Oklahoma and southeast
Kansas at 0125 UTC 14 May 2009. The melting level for
this case is;4.5 km. Comparison of the SL3D and SHY
classifications shows that the outermost boundaries of
the precipitating regions are very similar, and any dif-
ferences in the overall scale of precipitating regions for
this case are arguably negligible. However, comparison
of the SL3D and SHY classifications shows that con-
vective regions are larger in the SL3D classification. This
difference in convective classification is a direct result of
the dependence of the SL3D algorithm on the vertical
extent of a storm rather than a low-altitudeZH threshold
and is common across a large number of additional ca-
ses. When the SHY algorithm is applied at an altitude of
3 km, it identifies the largest ZH values as convective,
and expands the convective classification using the
two-step radii thresholds. However, the SL3D method
identifies a much larger convective region based on the

FIG. 5. Maps of (a) column-maximum ZH, (b) SL3D classification, (c) SHY classification, and (bottom) a vertical cross section of ZH

following the thick line labeled A–B in (a) for a collection of deep quasi-linear convective storms over OK and southeast KS at 0125 UTC
14 May 2009. The thick colored lines at the base of the cross section show the corresponding SL3D and SHY classifications.
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vertical extent of the storm, regardless of the magni-
tude of ZH at lower levels. These differences in con-
vective classification are demonstrated further in the
vertical cross section labeled A–B in Fig. 5a. The
largest convective cell in the cross section has a broader
horizontal extent of high reflectivity ($30 dBZ) aloft
than near the surface, which is responsible for the
broader SL3D convective classification compared to
SHY. For the two smaller convective cells in the cross
section, both SL3D and SHY identify the largest ZH

values as convective, but the SHY algorithm under-
represents the horizontal extent of the storms, as evi-
denced by the ZH columns.
Figure 6 shows application of the SL3D algorithm

to a case containing multiple discrete supercell storms
and a mesoscale convective system (MCS) over central
and northeasternOklahoma, respectively, at 2325UTC
23 May 2011. The melting level for this case is
;4.25 km. This case demonstrates the performance of
the SL3D classification for a wide variety of convective

organizations and intensities. Only single-polarization
observations are available, such that updrafts are clas-
sified using WER identification alone. Both SL3D
and SHY produce reasonable convective classifications
within the MCS, again with noticeably larger convec-
tive regions in the SL3D classification. The differences
in the scales of convective classifications between SL3D
and SHY are largest in the supercell storms, which is a
reflection of the dependence of SL3D on the depth of
the intense reflectivity column. For the WER-only up-
draft classification in SL3D, this case demonstrates that
unless the convection is sufficiently intense, few, if any,
updraft regions are identified using the WER method
alone. In particular, each supercell has a clearly defined
updraft, demonstrating the robustness of the WER
classification method in supercell storms, which (as dis-
cussed in section 3c) typically contain large bounded
WERs. The MCS in the northeastern portion of the
domain, however, shows little to no area classified as
convective updraft.

FIG. 6. Maps of (a) column-maximum ZH, (b) ZH at 3-km altitude, (c) SL3D classification, and (d) SHY clas-
sification for a collection of supercell storms and an MCS over OK at 2325 UTC 23 May 2011. The white ellipse in
(a) encloses weaker convection that is discussed in the text.
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The cases presented thus far are largely limited to
intense and/or extreme storms located in the U.S.
Great Plains. To demonstrate the success of SL3D in
other regions and environments, we include three
additional cases here and a fourth in section 6 below.
First, Fig. 7 shows observations centered over south-
east Texas during the landfall of Tropical Storm Bill at
0000 UTC 17 June 2015. Additional weaker convec-
tion and stratiform rain is included in the northwestern
portion of the domain and moderately intense con-
vection in the eastern portion of the domain. The
melting level for this case is ;4.75 km; however, a
pronounced increase in the melting-level height is
noted by the height of the bright band within Trop-
ical Storm Bill (line A–B; Fig. 7). While differences
similar to those outlined in previous cases can be
observed here, we focus our attention on differences
within the tropical storm and in the broad area of
weak convection surrounded by stratiform rain in the
northwest portion of the domain. Specifically, the ver-
tical cross section labeledA–B in Fig. 7a bisects Tropical
Storm Bill, while the cross section labeled C–D bisects
the weaker convection.

For Tropical Storm Bill, a deep convective tower is
observed to be reaching altitudes in excess of 17 km near
the center of the storm, followed by a large region of
weak-to-moderate stratiform rain radially outward.
Both the SL3D and SHY classifications correctly iden-
tify the convective region near the center of the storm,
with the SL3D convective classification extending far-
ther toward the center. The displacement of the SL3D
classification relative to that from SHY corresponds to
the extension of higher reflectivity aloft, capturing the
weaker precipitation just below the high-reflectivity
column. Radially outward from the convective region,
however, is a region with larger differences between the
SL3D and SHY classifications. Namely, there is a region
of intense stratiform rain classified by SHY as convec-
tive. Though overrepresentation of convection by the
SHY algorithm is rare, such false classification is due to
the absolute ZH threshold used for convective pre-
cipitation in the SHY algorithm (i.e., 43 dBZ).
Additional differences between the SL3D and SHY

classifications are observed in the cross section through
the weaker convection in Fig. 7 (labeled C–D). This cross
section demonstrates the SL3D classification capturing

FIG. 7. Maps of (a) column-maximum ZH, (b) SL3D classification, (c) SHY classification, and (bottom) vertical cross sections of ZH

following the thick lines labeled A–B and C–D in (a) for Tropical Storm Bill in southeast TX and additional nearby precipitation in AR,
LA, OK, and TX at 0000 UTC 17 Jun 2015. The thick colored lines at the base of each cross section show the corresponding SL3D and
SHY classifications.
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the horizontal extent of higher reflectivity in the weaker
storms while the SHY algorithm classifies smaller regions
that appear to be primarily limited to exceedances of the
43-dBZ ZH threshold at 3km. Leveraging of additional
vertical information in the SL3D algorithm enables im-
proved classification of weak convection for both this case
and the 23May 2011 case (see Fig. 6a, white ellipse). This
difference highlights that SHYwas primarily designed for
surface precipitation estimation and is not focused on
convective motions aloft.
Further examples of improvements in the classification

of weaker convection can be found in storms from the
Southeast and Northeast regions of the United States
(Figs. 8 and 9, respectively). The melting level for the
Southeast case is;4.5km and for the Northeast case it is
;4.25km. For the Southeast case, there are two lines of
convection: one translating northwest to southeast across
the Florida panhandle and the other translating south-
west to northeast across central Georgia. For both con-
vective lines, SL3D convective classifications are both
more numerous and slightly broader in horizontal extent.
We present a cross section in Fig. 8 through one of the
convective regions that is broad in the SL3D classification
and marginally present in the SHY classification. In this
cross section, two weak-to-moderate convective cells are

apparent on the southern end of the storm and reach al-
titudes at and slightly above the melting level. While
SL3D identifies both of these convective regions well,
SHY misses the deeper of the two, which has lower
column-maximum ZH. Apart from these differences in
the convective regions, the two classifications are similar.
For the northeast case, there is a largeMCS in the central
and northeastern portions of the domain and weaker
discrete convection in the western portion of the domain.
The SL3D and SHYclassifications are similar in theMCS
where convection is deeper and ZH is more intense, but
the results differ considerably in the weaker convection
to thewest. The vertical cross section in Fig. 9 bisects both
the weak discrete convection and the deeper convection
of the MCS. Once again, the largest differences between
the SL3D and SHY classifications are observed in the
weaker, shallower storms, which are marginally captured
in the SHY algorithm.

6. Importance of the polarimetric updraft
classification

As outlined in section 3c and demonstrated using mul-
tiple cases in this study, convective updraft identifica-
tion using single-polarization radar observations with the

FIG. 8. Maps of (a) column-maximum ZH, (b) SL3D classification, (c) SHY classification, and (bottom) a vertical cross section of ZH

following the thick line labeledA–B for anMCS located overAL, FL, andGAat 0000UTC 24 Jul 2013. The thick colored lines at the base
of the cross section show the corresponding SL3D and SHY classifications.
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SL3D algorithm is limited to the existence of WERs in
ZH. Furthermore, whileWERs are a commonly observed
radar characteristic of supercell storms (e.g., Markowski
and Richardson 2010), such as in Fig. 6, many storms do
not contain discernible WERs. This limitation means that
updraft regions within the majority of convection ob-
served by single-polarization radar cannot be detected
with this method. Fortunately, polarimetric radar obser-
vations enable updraft identification within most convec-
tive regions without WERs through the detection of
raindrops lofted to altitudes above the environmental
freezing level (ZDR and KDP columns). However, despite
representing similar microphysical characteristics, the
ZDR and KDP columns do not always coexist (e.g., Loney
et al. 2002). Similarly, both ZDR and KDP vary differently
with varying sizes and concentrations of hail and hail–rain
mixtures. For example, in hail–rain mixtures, the ZDR

signal may be dominated by the presence of large, tum-
bling hail. Because of the smaller dielectric constant of ice,
lower concentration of hailstones, and spherical shape of
hailstones (Balakrishnan and Zrnić 1990),KDP is affected
little by hail. Thus, in order to enable classification of as
many convective updrafts as possible, it is critical to use
ZDR columns, KDP columns, and WERs for updraft
classification.
Figures 10 and 11 demonstrate the importance of

identifying bothZDR andKDP columns for a leading-line

trailing-stratiformMCS over northern Indiana andOhio
at 0330 UTC 13 June 2013. The melting level for this
case is ;4.5 km. Figures 10a–c show maps of column-
maximum ZH, ZDR at 5-km altitude, and KDP at 5-km
altitude, respectively, centered on the leading convec-
tive line. The 5-km-altitude level for the polarimetric
variables is chosen since it lies immediately above the
environmental melting (freezing) level. The convective
line is clearly visible as a narrow region of large ZH

(.40dBZ) in the column-maximum map, with corre-
sponding updraft regions shown as distinct maxima in
the polarimetric variables at 5 km. However, compari-
son of the ZDR and KDP maps reveals that the largest
values of each variable generally correspond to rela-
tively low values in the other, especially in the north-
eastern elements of the convective line. This behavior
suggests that ZDR columns are more prevalent in
southwestern elements of the convective line and KDP

columns are more prevalent in the northeastern portion.
The spatial offsets are further demonstrated in the ver-
tical cross sections in Figs. 11a–c, taken along path A–B
in Fig. 10, which bisect a storm with sparse ZDR column
detection and prevalent KDP column detection. These
cross sections show that while no WERs or deep ZDR

columns are evident within the storm, a deep KDP col-
umn extending up to ;3 km above the melting level
enables detection of the updraft in this case.

FIG. 9. As in Fig. 8, but for scattered weak convection and an MCS located primarily over NY and PA at 2300 UTC 25 Jun 2014.
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7. Limitations of the SL3D algorithm

Although we have presented several successful ap-
plications of the SL3D algorithm, there are some limi-
tations of the method worth discussing here. While the
WER updraft classification performs well in strong
supercell storms and is able to identify the core updraft
region (e.g., Fig. 3), more quantitative validation is
required. Additionally, there are cases where false
WER-based updraft classifications are revealed in the
SL3D classification. Such false WERs are typically as-
sociated with deep convection containing narrow re-
gions of precipitation, leading to updraft classifications
on both upstream and downstream sides of the storm. In
reality, most updrafts are limited in space to one side of a
storm (e.g., Jorgensen et al. 1997; Lang and Rutledge
2008; and Figs. 3 and 4 here). Examples of this error can
be seen for the 14 May 2009 case in Fig. 5. It should be
noted, however, that suchWER errors typically account
for !1% of the total classified area (determined by
analyzing updraft classifications in several additional
cases not shown here). Thus, we expect false WER
identifications to be negligible in most (if not all) cases.

While the convective classification in SL3D performs
well in most cases, there are times where some strati-
form rain is falsely classified as convection. The thresh-
olds used in the convective classification here were
chosen in order to minimize such errors using many case
studies of the NEXRAD WSR-88D composite obser-
vations. These errors depend strongly on the intensity of
stratiform rain and the melting-level altitude (which
may be modified significantly within a storm). Future
studies are needed to examine the probability of de-
tection and false alarm rate of the convective classifi-
cation for weak convection.
Finally, there are important limitations of the SL3D

algorithm related to the characteristics of the radar
dataset it is applied to. Since the SL3D classifications
require substantial vertical information to be successful,
it may not be appropriate to apply the algorithm to data
from a single NEXRAD WSR-88D because of both a
lack of vertical coverage and resolution degradation at
larger distances from the radar. However, the SL3D
algorithm can be applied to any gridded volumetric ra-
dar dataset so long as the vertical resolution of the
dataset is sufficient (#1-km grid spacing) and the depth

FIG. 10. Maps of (a) column-maximum ZH, (b) ZDR at 5-km altitude, (c) KDP at 5-km altitude, (d) SL3D classification, (e) SL3D
classification with ZDR-only updraft classification, and (f) SL3D classification with KDP-only updraft classification for an MCS
located in northern IN and OH at 0330 UTC 13 Jun 2013. The thick lines on each map show the locations of the vertical cross
sections in Fig. 11.
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of the volume spans altitudes from 3 to 10 km (as re-
quired by the classification categories). In addition, one
potential issue for application of the SL3D algorithm
related to grid resolution is the sensitivity of the con-
vective classification to the melting-level altitude. Namely,
for datasets with vertical resolution that meets or ex-
ceeds the uncertainty in the altitude of themelting level
used, theZH5 45 dBZ above the melting level criterion
may be erroneously met when the melting-level alti-
tude is underestimated. However, it is worth noting
here that this criterion was rarely responsible for con-
vective classifications beyond those identified by the
peakedness and echo-top criteria for the cases shown
in this study. Thus, while this is a possible limitation of
the algorithm, we expect that in most cases it will be
negligible.

8. Summary and discussion

This study introduced a new storm classification algo-
rithm for single- and dual-polarization radar observations
that leverages three-dimensional information of a volu-
metric dataset: the SL3D algorithm. Several cases of
varying intensity, complexity, and regionality were pre-
sented to demonstrate the performance of the algorithm.
Comparisons between the SL3D algorithm and a tradi-
tional storm classification method (Steiner et al. 1995)
revealed that convective regionswere commonly larger in
scale when using the SL3D classification. This difference
was shown to commonly be the result of including echo-
top information in the classification and is dependent on
the degree of vertical tilt of convection. For cases of less
intense convection that traditional methods were un-
able to detect, the SL3D algorithm was successful in their
identification (e.g., see Figs. 7–9). Both the increased fre-
quency of identifying convection and the larger convective
regions may have an important impact on the latent
heating budget of convective systems (e.g., Houze 1989),
especially for latent heat retrievals utilizing two-
dimensional methods to aid in the discrimination of
echo (e.g., Tao et al. 1993, 2001).
In addition, we introduced a novel three-part con-

vective updraft identification method that leverages
both single- and dual-polarization radar information and
enables identification of updrafts within storms of varying
intensity and complexity. For single-polarization radar,
we employed a WER identification method, which was
shown to performwell in supercell storms but was unable
to routinely identify updrafts in cases with alternative
convective organization. For dual-polarization radar ob-
servations, the addition ofZDR andKDP columndetection
was shown to enable updraft identification within most
cases of classified convection extending above themelting
level (see Figs. 1, 2, 8, 9, 10, and 11). The updraft identi-
fication method may be useful for studies investigating
the variability of convection and validation of simulated
convection in numerical models (e.g., Collis et al. 2013;
Varble et al. 2014).
Since SL3D enables the classification of radar echo

into five dynamically and physically based categories, it
allows for targeted research on individual elements of a
storm. For example, previous convective transport
studies have found that ZH of ice within anvil regions
can be used as a proxy for identifying the level of max-
imumdetrainment (e.g.,Mullendore et al. 2009; Carletta
et al. 2016). Because of the inclusion of an ice-only anvil
classification, the SL3D algorithm may enable future
improvements in this research. Finally, since the SL3D
classification leverages three-dimensional radar obser-
vations to classify storms, this approach can be applied

FIG. 11. Vertical cross sections of (a) ZH, (b) ZDR, and (c) KDP

along the line in Fig. 10, from A (left) to B (right). The thick
horizontal line in each cross section represents the altitude of the
environmental melting level and the thick colored line at the base
of each cross section shows the corresponding SL3D classification.
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globally using satellite-based radar observations from
systems such as the Tropical RainfallMeasuringMission
(TRMM) Precipitation Radar (PR) or the Global Pre-
cipitation Measurement (GPM) mission Dual-Frequency
PrecipitationRadar (DPR) for a variety of scientific studies.
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